These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 9866715)

  • 21. Characteristics of Na(+)-dependent intestinal nucleoside transport in the pig.
    Scharrer E; Rech KS; Grenacher B
    J Comp Physiol B; 2002 May; 172(4):309-14. PubMed ID: 12037593
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of intestinal phosphate transport. II. Metabolic acidosis stimulates Na(+)-dependent phosphate absorption and expression of the Na(+)-P(i) cotransporter NaPi-IIb in small intestine.
    Stauber A; Radanovic T; Stange G; Murer H; Wagner CA; Biber J
    Am J Physiol Gastrointest Liver Physiol; 2005 Mar; 288(3):G501-6. PubMed ID: 15701624
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification and characterization of a Na+-dependent neutral amino acid transporter, ASCT1, in rabbit corneal epithelial cell culture and rabbit cornea.
    Katragadda S; Talluri RS; Pal D; Mitra AK
    Curr Eye Res; 2005 Nov; 30(11):989-1002. PubMed ID: 16282133
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sequential alterations in gut mucosal amino acid and glucose transport after 70% small bowel resection.
    Sarac TP; Seydel AS; Ryan CK; Bessey PQ; Miller JH; Souba WW; Sax HC
    Surgery; 1996 Sep; 120(3):503-8. PubMed ID: 8784404
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Posttranslational alanine trans-stimulation of zwitterionic amino acid transport systems in human intestinal Caco-2 cells.
    Pan M; Souba WW; Wolfgang CL; Karinch AM; Stevens BR
    J Surg Res; 2002 May; 104(1):63-9. PubMed ID: 11971679
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characteristics of dicarboxylic amino acid transport by rabbit intestinal brush-border membrane vesicles.
    Nutr Rev; 1985 Jan; 43(1):30-2. PubMed ID: 3885083
    [No Abstract]   [Full Text] [Related]  

  • 27. Expression of apical membrane L-glutamate transporters in neonatal porcine epithelial cells along the small intestinal crypt-villus axis.
    Fan MZ; Matthews JC; Etienne NM; Stoll B; Lackeyram D; Burrin DG
    Am J Physiol Gastrointest Liver Physiol; 2004 Aug; 287(2):G385-98. PubMed ID: 15044176
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Electron microscopic study of 3H-leucine transport between the internal body environment and the enteral environment].
    Nadtochiĭ VV; Baklykova NM; Brodskiĭ RA; Gal'perin IuM
    Tsitologiia; 1983 Jul; 25(7):748-53. PubMed ID: 6623634
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purification and reconstitution of an intestinal Na(+)-dependent neutral L-alpha-amino acid transporter.
    Nakanishi M; Kagawa Y; Narita Y; Hirata H
    J Biol Chem; 1994 Mar; 269(12):9325-9. PubMed ID: 8132671
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A 40-kDa polypeptide from papain digestion of the rabbit intestinal Na+/phosphate cotransporter retains Na+ and phosphate cotransport.
    Peerce BE
    Arch Biochem Biophys; 2002 May; 401(1):1-10. PubMed ID: 12054481
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Na+-dependent uptake of 4-azidophenylalanine by pig intestinal microvillus vesicles. Interaction with neutral amino acid uptake and labelling pattern.
    Norén O; Sjöström H; Larsen P
    Eur J Biochem; 1983 Jul; 134(1):71-6. PubMed ID: 6861764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Na(+)-dependent system A and ASC-independent amino acid transport system stimulated by glucagon in rat hepatocytes.
    Lim SK; Cynober L; De Bandt JP; Aussel C
    Cell Biol Int; 1999; 23(1):7-12. PubMed ID: 10527543
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [The characteristics of amino acid transport in the small intestine of chicks with avitaminosis A].
    Basova NA; Berzin' NI; Markov IuG
    Fiziol Zh Im I M Sechenova; 1995 Jul; 81(7):40-7. PubMed ID: 8714374
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Liposome transport as a model of substance absorption in the small intestine studied by electron microscopic autoradiography and scanning microscopy].
    Nadtochiĭ VV; Brodskiĭ RA; Popov GA; Poverennyĭ AM
    Tsitologiia; 1984 Aug; 26(8):908-13. PubMed ID: 6495393
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sodium chloride transport pathways in intestinal membrane vesicles.
    Hopfer U
    Methods Enzymol; 1990; 192():389-408. PubMed ID: 2074800
    [No Abstract]   [Full Text] [Related]  

  • 36. A role for the cytoskeleton in vectorial epithelial transport in stomach and small intestine?
    Cassidy MM; Dinno MA
    Prog Clin Biol Res; 1983; 126():343-64. PubMed ID: 6604282
    [No Abstract]   [Full Text] [Related]  

  • 37. [Electrophysiological analysis of cellular regulation of sodium transport in the large intestine of the rabbit].
    Clauss W; van Cleve I
    Dtsch Tierarztl Wochenschr; 1987 Jan; 94(1):4-6. PubMed ID: 3545762
    [No Abstract]   [Full Text] [Related]  

  • 38. Amphibian intestinal brush border membranes-I. Isolation from Rana catesbeiana tadpole.
    Dauca M; Hourdry J; Hugon JS; Menard D
    Comp Biochem Physiol B; 1979; 64(2):155-9. PubMed ID: 318543
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Subcellular localization of 45Ca2+ during absorption by small intestinal epithelium in rats].
    Morozov IA; Spirichev VB; Lysikov IuA
    Biull Eksp Biol Med; 1980 Dec; 90(12):736-8. PubMed ID: 7470613
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sodium-amino acid interactions in the intestinal epithelium.
    Smith MW; Ellory JC
    Philos Trans R Soc Lond B Biol Sci; 1971 Aug; 262(842):131-40. PubMed ID: 4399213
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.