These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 9866881)

  • 1. Effects of food nutrient content, insect age and stage in the feeding cycle on the FMRFamide immunoreactivity of diffuse endocrine cells in the locust gut.
    Zudaire E; Simpson SJ; Montuenga LM
    J Exp Biol; 1998 Nov; 201(Pt 21):2971-9. PubMed ID: 9866881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of diet and feeding state on FMRFamide-related peptides in the gut of Locusta migratoria L.
    Hill SR; Orchard I
    Peptides; 2004 Jan; 25(1):105-14. PubMed ID: 15003362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feeding state influences the content of FMRFamide- and tachykinin-related peptides in endocrine-like cells of the midgut of Locusta migratoria.
    Lange AB
    Peptides; 2001 Feb; 22(2):229-34. PubMed ID: 11179816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FMRFamide-related peptides in the gut of Locusta migratoria L.: a comprehensive map and developmental profile.
    Hill SR; Orchard I
    Peptides; 2003 Oct; 24(10):1511-24. PubMed ID: 14706530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dietary influences over proliferating cell nuclear antigen expression in the locust midgut.
    Zudaire E; Simpson SJ; Illa I; Montuenga LM
    J Exp Biol; 2004 Jun; 207(Pt 13):2255-65. PubMed ID: 15159430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endothelin-like immunoreactivity in midgut endocrine cells of the desert locust, Locusta migratoria.
    Montuenga LM; Prado MA; Springall DR; Polak JM; Sesma P
    Gen Comp Endocrinol; 1994 Jan; 93(1):9-20. PubMed ID: 8138123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intestinal peptides as circulating hormones: release of tachykinin-related peptide from the locust and cockroach midgut.
    Winther AM; Nässel DR
    J Exp Biol; 2001 Apr; 204(Pt 7):1269-80. PubMed ID: 11249837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of SchistoFLRFamide on contractions of locust midgut.
    Lange AB; Orchard I
    Peptides; 1998; 19(3):459-67. PubMed ID: 9533633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and sequencing of two FMRFamide-related peptides from the gut of Locusta migratoria L.
    Hill SR; Orchard I
    Peptides; 2007 Aug; 28(8):1490-7. PubMed ID: 17707763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parasitism-induced accumulation of FMRFamide-like peptides in the gut innervation and endocrine cells of Manduca sexta.
    Zitnan D; Kingan TG; Beckage NE
    Insect Biochem Mol Biol; 1995 Jun; 25(6):669-78. PubMed ID: 7627199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for the association of FMRFamide-related peptides with the spermatheca of Locusta migratoria.
    Clark J; Lange AB
    Peptides; 2002 Apr; 23(4):613-9. PubMed ID: 11897379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FMRFamide-related peptides in potato cyst nematodes.
    Kimber MJ; Fleming CC; Bjourson AJ; Halton DW; Maule AG
    Mol Biochem Parasitol; 2001 Sep; 116(2):199-208. PubMed ID: 11522352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional identification of an FMRFamide-related peptide gene on diapause induction of the migratory locust, Locusta migratoria L.
    Hao K; Ullah H; Jarwar AR; Nong X; Tu X; Zhang Z
    Genomics; 2020 Mar; 112(2):1821-1828. PubMed ID: 31669703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A possible role of SchistoFLRFamide in inhibition of adipokinetic hormone release from locust corpora cardiaca.
    Vullings HG; Ten Voorde SE; Passier PC; Diederen JH; Van Der Horst DJ; Nässel DR
    J Neurocytol; 1998 Dec; 27(12):901-13. PubMed ID: 10659682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptides in the locusts, Locusta migratoria and Schistocerca gregaria.
    Schoofs L; Veelaert D; Vanden Broeck J; De Loof A
    Peptides; 1997; 18(1):145-56. PubMed ID: 9114464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutrient balancing in grasshoppers: behavioural and physiological correlates of dietary breadth.
    Raubenheimer D; Simpson SJ
    J Exp Biol; 2003 May; 206(Pt 10):1669-81. PubMed ID: 12682099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation in chemosensitivity and the control of dietary selection behaviour in the locust.
    Simpson SJ; James S; Simmonds MS; Blaney WM
    Appetite; 1991 Oct; 17(2):141-54. PubMed ID: 1763906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The regenerative nidi of the locust midgut as a model to study epithelial cell differentiation from stem cells.
    Illa-Bochaca I; Montuenga LM
    J Exp Biol; 2006 Jun; 209(Pt 11):2215-23. PubMed ID: 16709922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FMRFamide-like immunoreactivity in the central nervous system and alimentary tract of the non-hematophagous blow fly, Phormia regina, and the hematophagous horse fly, Tabanus nigrovittatus.
    Haselton AT; Yin CM; Stoffolano JG
    J Insect Sci; 2008; 8():1-17. PubMed ID: 20302523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of FaRP immunoreactivity in free-living nematodes and in the plant-parasitic nematode Heterodera glycines.
    Masler EP; Kovaleva ES; Sardanelli S
    Ann N Y Acad Sci; 1999; 897():253-63. PubMed ID: 10676453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.