These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 9866881)

  • 41. Peptidergic regulation of the Limulus midgut.
    Groome JR; deTschaschell M; Watson WH
    J Comp Physiol A; 1992 Jun; 170(5):631-43. PubMed ID: 1354745
    [TBL] [Abstract][Full Text] [Related]  

  • 42. FMRFamide-related peptides and serotonin regulate Drosophila melanogaster heart rate: mechanisms and structure requirements.
    Nichols R
    Peptides; 2006 May; 27(5):1130-7. PubMed ID: 16516344
    [TBL] [Abstract][Full Text] [Related]  

  • 43. RYIRFamide: a turbellarian FMRFamide-related peptide (FaRP).
    Maule AG; Shaw C; Halton DW; Curry WJ; Thim L
    Regul Pept; 1994 Feb; 50(1):37-43. PubMed ID: 7909164
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pharmacology of FMRFamide-related peptides in helminths.
    Geary TG; Marks NJ; Maule AG; Bowman JW; Alexander-Bowman SJ; Day TA; Larsen MJ; Kubiak TM; Davis JP; Thompson DP
    Ann N Y Acad Sci; 1999; 897():212-27. PubMed ID: 10676450
    [TBL] [Abstract][Full Text] [Related]  

  • 45. FMRF-related peptides in Aedes aegypti midgut: neuromuscular connections and enteric nervous system.
    Godoy RSM; Barbosa RC; Procópio TF; Costa BA; Jacobs-Lorena M; Martins GF
    Cell Tissue Res; 2021 Sep; 385(3):585-602. PubMed ID: 33961128
    [TBL] [Abstract][Full Text] [Related]  

  • 46. FaRP cell distribution in the developing CNS suggests the involvement of FaRPs in all parts of the chromatophore control pathway in Sepia officinalis (Cephalopoda).
    Aroua S; Andouche A; Martin M; Baratte S; Bonnaud L
    Zoology (Jena); 2011 Apr; 114(2):113-22. PubMed ID: 21397478
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The distribution and myotropic activity of locustatachykinin-like peptides in locust midgut.
    Pabla N; Lange AB
    Peptides; 1999; 20(10):1159-67. PubMed ID: 10573287
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular analysis of FMRFamide- and FMRFamide-related peptides (FaRPS) in the cuttlefish Sepia officinalis.
    Loi PK; Tublitz N
    J Exp Biol; 1997 May; 200(Pt 10):1483-9. PubMed ID: 9192498
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The role of neuropeptides in caterpillar nutritional ecology.
    Bede JC; McNeil JN; Tobe SS
    Peptides; 2007 Jan; 28(1):185-96. PubMed ID: 17161504
    [TBL] [Abstract][Full Text] [Related]  

  • 50. FMRFamide-like material in the earwig, Euborellia annulipes, and its functional significance.
    Rankin SM; Seymour SM
    Arch Insect Biochem Physiol; 2001 Aug; 47(4):189-97. PubMed ID: 11462223
    [TBL] [Abstract][Full Text] [Related]  

  • 51. FMRFamide-like immunoreactivity in the metathoracic ganglion of the locust (Schistocerca gregaria).
    Walther C; Schäfer S
    Cell Tissue Res; 1988 Aug; 253(2):489-91. PubMed ID: 3409299
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Roles of glutamate and FMRFamide-related peptides at the chromatophore neuromuscular junction in the cuttlefish, Sepia officinalis.
    Loi PK; Tublitz NJ
    J Comp Neurol; 2000 May; 420(4):499-511. PubMed ID: 10805923
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impact of high-fat feeding on basic helix-loop-helix transcription factors controlling enteroendocrine cell differentiation.
    Sakar Y; Duca FA; Langelier B; Devime F; Blottiere H; Delorme C; Renault P; Covasa M
    Int J Obes (Lond); 2014 Nov; 38(11):1440-8. PubMed ID: 24480860
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biological activity of diuretic factors on the anterior midgut of the blood-feeding bug, Rhodnius prolixus.
    Te Brugge V; Ianowski JP; Orchard I
    Gen Comp Endocrinol; 2009 May; 162(1):105-12. PubMed ID: 19408362
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microarray-based annotation of the gut transcriptome of the migratory locust, Locusta migratoria.
    Spit J; Badisco L; Vergauwen L; Knapen D; Vanden Broeck J
    Insect Mol Biol; 2016 Dec; 25(6):745-756. PubMed ID: 27479692
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A single receptor transduces both inhibitory and stimulatory signals of FMRFamide-related peptides.
    Wang Z; Orchard I; Lange AB; Chen X; Starratt AN
    Peptides; 1995; 16(7):1181-6. PubMed ID: 8545236
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Distribution of FMRFamide-like immunoreactivity in the alimentary tract and hindgut ganglia of the barnacle Balanus amphitrite (Cirripedia, Crustacea).
    Gallus L; Bottaro M; Ferrando S; Girosi L; Ramoino P; Tagliafierro G
    Microsc Res Tech; 2006 Aug; 69(8):636-41. PubMed ID: 16770768
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparative analyses of the neuropeptide F (NPF)- and FMRFamide-related peptide (FaRP)-immunoreactivities in Fasciola hepatica and Schistosoma spp.
    Marks NJ; Halton DW; Maule AG; Brennan GP; Shaw C; Southgate VR; Johnston CF
    Parasitology; 1995 May; 110 ( Pt 4)():371-81. PubMed ID: 7753578
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Platyhelminth FMRFamide-related peptides (FaRPs) contract Schistosoma mansoni (Trematoda: Digenea) muscle fibres in vitro.
    Day TA; Maule AG; Shaw C; Halton DW; Moore S; Bennett JL; Pax RA
    Parasitology; 1994 Nov; 109 ( Pt 4)():455-9. PubMed ID: 7800413
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Isolation, sequence, and bioactivity of FMRFamide-related peptides from the locust ventral nerve cord.
    Lange AB; Peeff NM; Orchard I
    Peptides; 1994; 15(6):1089-94. PubMed ID: 7991453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.