BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 9867811)

  • 1. Calcium-dependent oligomerization of synaptotagmins I and II. Synaptotagmins I and II are localized on the same synaptic vesicle and heterodimerize in the presence of calcium.
    Osborne SL; Herreros J; Bastiaens PI; Schiavo G
    J Biol Chem; 1999 Jan; 274(1):59-66. PubMed ID: 9867811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium-dependent and -independent hetero-oligomerization in the synaptotagmin family.
    Fukuda M; Mikoshiba K
    J Biochem; 2000 Oct; 128(4):637-45. PubMed ID: 11011146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of the presynaptic calcium sensors, synaptotagmin I/II and synaptotagmin III, in the goldfish and rodent retinas.
    Berntson AK; Morgans CW
    J Vis; 2003; 3(4):274-80. PubMed ID: 12803536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct self-oligomerization activities of synaptotagmin family. Unique calcium-dependent oligomerization properties of synaptotagmin VII.
    Fukuda M; Mikoshiba K
    J Biol Chem; 2000 Sep; 275(36):28180-5. PubMed ID: 10871604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three distinct kinetic groupings of the synaptotagmin family: candidate sensors for rapid and delayed exocytosis.
    Hui E; Bai J; Wang P; Sugimori M; Llinas RR; Chapman ER
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5210-4. PubMed ID: 15793006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca(2+)-dependent and -independent activities of neural and non-neural synaptotagmins.
    Li C; Ullrich B; Zhang JZ; Anderson RG; Brose N; Südhof TC
    Nature; 1995 Jun; 375(6532):594-9. PubMed ID: 7791877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conserved N-terminal cysteine motif is essential for homo- and heterodimer formation of synaptotagmins III, V, VI, and X.
    Fukuda M; Kanno E; Mikoshiba K
    J Biol Chem; 1999 Oct; 274(44):31421-7. PubMed ID: 10531343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptotagmin V is targeted to dense-core vesicles that undergo calcium-dependent exocytosis in PC12 cells.
    Saegusa C; Fukuda M; Mikoshiba K
    J Biol Chem; 2002 Jul; 277(27):24499-505. PubMed ID: 12006594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptotagmin: a calcium sensor on the synaptic vesicle surface.
    Brose N; Petrenko AG; Südhof TC; Jahn R
    Science; 1992 May; 256(5059):1021-5. PubMed ID: 1589771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The synaptotagmins: calcium sensors for vesicular trafficking.
    Yoshihara M; Montana ES
    Neuroscientist; 2004 Dec; 10(6):566-74. PubMed ID: 15534041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phospholipid composition dependence of Ca2+-dependent phospholipid binding to the C2A domain of synaptotagmin IV.
    Fukuda M; Kojima T; Mikoshiba K
    J Biol Chem; 1996 Apr; 271(14):8430-4. PubMed ID: 8626542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct Ca(2+)-dependent properties of the first and second C2-domains of synaptotagmin I.
    Sugita S; Hata Y; Südhof TC
    J Biol Chem; 1996 Jan; 271(3):1262-5. PubMed ID: 8576108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs.
    Tucker WC; Weber T; Chapman ER
    Science; 2004 Apr; 304(5669):435-8. PubMed ID: 15044754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo.
    Poskanzer KE; Marek KW; Sweeney ST; Davis GW
    Nature; 2003 Dec; 426(6966):559-63. PubMed ID: 14634669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the conserved WHXL motif in the C terminus of synaptotagmin in synaptic vesicle docking.
    Fukuda M; Moreira JE; Liu V; Sugimori M; Mikoshiba K; Llinás RR
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14715-9. PubMed ID: 11114192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptotagmin VII as a plasma membrane Ca(2+) sensor in exocytosis.
    Sugita S; Han W; Butz S; Liu X; Fernández-Chacón R; Lao Y; Südhof TC
    Neuron; 2001 May; 30(2):459-73. PubMed ID: 11395007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct interaction of the calcium sensor protein synaptotagmin I with a cytoplasmic domain of the alpha1A subunit of the P/Q-type calcium channel.
    Charvin N; L'evêque C; Walker D; Berton F; Raymond C; Kataoka M; Shoji-Kasai Y; Takahashi M; De Waard M; Seagar MJ
    EMBO J; 1997 Aug; 16(15):4591-6. PubMed ID: 9303303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptotagmins in membrane traffic: which vesicles do the tagmins tag?
    Marquèze B; Berton F; Seagar M
    Biochimie; 2000 May; 82(5):409-20. PubMed ID: 10865128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional and biochemical analysis of the C2 domains of synaptotagmin IV.
    Thomas DM; Ferguson GD; Herschman HR; Elferink LA
    Mol Biol Cell; 1999 Jul; 10(7):2285-95. PubMed ID: 10397765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inositol 1,3,4,5-tetrakisphosphate binding activities of neuronal and non-neuronal synaptotagmins. Identification of conserved amino acid substitutions that abolish inositol 1,3,4,5-tetrakisphosphate binding to synaptotagmins III, V, and X.
    Ibata K; Fukuda M; Mikoshiba K
    J Biol Chem; 1998 May; 273(20):12267-73. PubMed ID: 9575177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.