These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 986841)

  • 1. Effect of midbrain raphe lesion on avoidance learning in aggressive mice.
    Valzelli L; Bernasconi S; Bohlken S
    Biol Psychiatry; 1976 Oct; 11(5):575-82. PubMed ID: 986841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Social isolation and expression of serotonergic neurotransmission-related genes in several brain areas of male mice.
    Bibancos T; Jardim DL; Aneas I; Chiavegatto S
    Genes Brain Behav; 2007 Aug; 6(6):529-39. PubMed ID: 17083332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The role of serotonin in one of the types of aggressive behavior--"predatory aggression"].
    Popova NK; Nikulina EM; Arav VA; Kudriavtseva NN
    Fiziol Zh SSSR Im I M Sechenova; 1975 Feb; 61(2):183-6. PubMed ID: 124672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity, avoidance learning and regional 5-hydroxytryptamine following intra-brain stem 5,7-dihydroxytryptamine and electrolytic midbrain raphe lesions in the rat.
    Lorens SA; Guldberg HC; Hole K; Köhler C; Srebro B
    Brain Res; 1976 May; 108(1):97-113. PubMed ID: 1276894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of serotoninergic neurons in rats agressive behaviour.
    Czlonkowski A; Kostowski W; Markowska L; Markiewicz L; Wiśniewska I
    Pol J Pharmacol Pharm; 1975 Oct; 27(Suppl):77-82. PubMed ID: 1239750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for a role of brain serotonergic neurotransmission in avoidance learning.
    Ogren SO
    Acta Physiol Scand Suppl; 1985; 544():1-71. PubMed ID: 3006431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavioral effects of selective midbrain raphe lesions in the rat.
    Srebro B; Lorens SA
    Brain Res; 1975 May; 89(2):303-25. PubMed ID: 1148851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Formation of a conditioned "passive" avoidance reaction following ablation of the midbrain central gray].
    Loskutova LV; Vinnitskiĭ IM; Il'iuchenok RIu
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1979; 29(5):955-61. PubMed ID: 494797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of caffeine on aggressive behavior and avoidance learning of rats with isolation syndrome.
    Petkov VV; Rousseva S
    Methods Find Exp Clin Pharmacol; 1984 Aug; 6(8):433-6. PubMed ID: 6541736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active avoidance is permanently abolished after lesions of the nucleus interpeduncularis in rat.
    Hammer KH; Klingberg F
    Biomed Biochim Acta; 1990; 49(6):489-97. PubMed ID: 2275723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lesions in Guddesn's tegmental nuclei produce behavioral and 5-HT effects similar to those after raphe lesions.
    Lorens SA; Köhler C; Guldberg HC
    Pharmacol Biochem Behav; 1975; 3(4):653-9. PubMed ID: 1187729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vasopressin V1b receptor knockout reduces aggressive behavior in male mice.
    Wersinger SR; Ginns EI; O'Carroll AM; Lolait SJ; Young WS
    Mol Psychiatry; 2002; 7(9):975-84. PubMed ID: 12399951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Open field activity and avoidance behavior following serotonin depletion: a comparison of the effects of parachlorophenylalanine and electrolytic midbrain raphe lesions.
    Köhler C; Lorens SA
    Pharmacol Biochem Behav; 1978 Mar; 8(3):223-33. PubMed ID: 148656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Inhibition of conditioned avoidance reactions following destruction of raphe nuclei in rats].
    Chaplygina SR; Loskutova LV; Il'iuchenok RIu
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1974; 24(5):996-1001. PubMed ID: 4420981
    [No Abstract]   [Full Text] [Related]  

  • 15. The mesencephalic reticular formation as a link in the cortical control of exploratory and goal-directed behaviour.
    Klingberg F; Mager P; Mager R
    Acta Physiol Hung; 1989; 74(2):121-34. PubMed ID: 2603729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of age and dopamine D2L receptor-deficiency on motor and learning functions.
    Fetsko LA; Xu R; Wang Y
    Neurobiol Aging; 2005 Apr; 26(4):521-30. PubMed ID: 15653180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of butylated hydroxyanisole and butylated hydroxytoluene on behavioral development of mice.
    Stokes JD; Scudder CL
    Dev Psychobiol; 1974 Jul; 7(4):343-50. PubMed ID: 4472726
    [No Abstract]   [Full Text] [Related]  

  • 18. [The effect of ablation in the n. medianus raphe on the aggressive and sexual behavior of white rats].
    Arav VI
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1975; 25(3):494-8. PubMed ID: 1239139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis.
    de Boer SF; Koolhaas JM
    Eur J Pharmacol; 2005 Dec; 526(1-3):125-39. PubMed ID: 16310183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of isolation on some behavioral characteristics in three strains of mice.
    Valzelli L; Bernasconi S; Gomba P
    Biol Psychiatry; 1974 Dec; 9(3):329-34. PubMed ID: 4474890
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.