BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 9869535)

  • 1. A fungal metabolite that eliminates motion artifacts.
    Jalife J; Morley GE; Tallini NY; Vaidya D
    J Cardiovasc Electrophysiol; 1998 Dec; 9(12):1358-62. PubMed ID: 9869535
    [No Abstract]   [Full Text] [Related]  

  • 2. Cytochalasin D as excitation-contraction uncoupler for optically mapping action potentials in wedges of ventricular myocardium.
    Wu J; Biermann M; Rubart M; Zipes DP
    J Cardiovasc Electrophysiol; 1998 Dec; 9(12):1336-47. PubMed ID: 9869533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects of cytochalasin D and 2,3 butanedione monoxime on isometric twitch force and transmembrane action potential in isolated ventricular muscle: implications for optical measurements of cardiac repolarization.
    Biermann M; Rubart M; Moreno A; Wu J; Josiah-Durant A; Zipes DP
    J Cardiovasc Electrophysiol; 1998 Dec; 9(12):1348-57. PubMed ID: 9869534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The electrophysiological and mechanical effects of 2,3-butane-dione monoxime and cytochalasin-D in the Langendorff perfused rabbit heart.
    Kettlewell S; Walker NL; Cobbe SM; Burton FL; Smith GL
    Exp Physiol; 2004 Mar; 89(2):163-72. PubMed ID: 15123545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical mapping of optically paced embryonic hearts.
    Wang YT; Gu S; Rollins AM; Jenkins MW
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1623-6. PubMed ID: 24110014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the excitation-contraction uncouplers diamine monoxime (DAM) and cytochalasin D (CytoD) on induced arrhythmias in the rabbit ventricle.
    Weiss JN; Chen PS; Qu Z; Karagueuzian HS; Lin SF; Garfinkel A; Karma A
    J Cardiovasc Electrophysiol; 2003 Mar; 14(3):331-2; author reply 332-4. PubMed ID: 12716123
    [No Abstract]   [Full Text] [Related]  

  • 7. Design and use of an "optrode" for optical recordings of cardiac action potentials.
    Neunlist M; Zou SZ; Tung L
    Pflugers Arch; 1992 Apr; 420(5-6):611-7. PubMed ID: 1614837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytoskeletal actin microfilaments and the transient outward potassium current in hypertrophied rat ventriculocytes.
    Yang X; Salas PJ; Pham TV; Wasserlauf BJ; Smets MJ; Myerburg RJ; Gelband H; Hoffman BF; Bassett AL
    J Physiol; 2002 Jun; 541(Pt 2):411-21. PubMed ID: 12042348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytochalasin D as the depressant of contraction for the optical monitoring of action potentials in isolated rat atrium.
    Sakai T
    J Physiol Sci; 2006 Oct; 56(5):385-8. PubMed ID: 16968564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of propranolol and epinephrine on the electrophysiology of the heart.
    Prinzmetal M; Hashimoto Y; Hayashi A; Hori K; Nakashima M
    Jpn Heart J; 1970 Sep; 11(5):478-88. PubMed ID: 5312391
    [No Abstract]   [Full Text] [Related]  

  • 11. Estrogens and the heart.
    Prinzmetal M; Ishikawa K; Nakashima M; Oishi H; Ozkan E; Wakayama J; Baines JM
    Am J Obstet Gynecol; 1967 Jun; 98(4):575-6. PubMed ID: 6025151
    [No Abstract]   [Full Text] [Related]  

  • 12. The effects of amphotericin B on the ionic currents on frog atrial trabeculae.
    Schanne OF; Ruiz-Ceretti E; Deslauriers Y; Payet D; Soulier P; Demers JM
    J Mol Cell Cardiol; 1977 Nov; 9(11):907-20. PubMed ID: 304107
    [No Abstract]   [Full Text] [Related]  

  • 13. Optical mapping of electromechanics in intact organs.
    Nesmith HW; Zhang H; Rogers JM
    Exp Biol Med (Maywood); 2020 Feb; 245(4):368-373. PubMed ID: 31842618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monophasic action potentials in the heart--experimental and clinical aspects.
    Slavícek J; Vyskocil F
    Acta Univ Carol Med Monogr; 2005; 150():5-61. PubMed ID: 16955989
    [No Abstract]   [Full Text] [Related]  

  • 15. In vivo recording of monophasic action potentials in awake dogs--new applications for experimental electrophysiology.
    Eckardt L; Meissner A; Kirchhof P; Weber T; Borggrefe M; Breithardt G; Van Aken H; Haverkamp W
    Basic Res Cardiol; 2001 Apr; 96(2):169-74. PubMed ID: 11327335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochalasin B: its morphological and electrophysiological actions on synthetic strands of cardiac muscle.
    Lieberman M; Manasek FJ; Sawanobori T; Johnson EA
    Dev Biol; 1973 Apr; 31(2):380-403. PubMed ID: 4787205
    [No Abstract]   [Full Text] [Related]  

  • 17. Gastrointestinal extracellular electrical recordings: fact or artifact?
    O'Grady G
    Neurogastroenterol Motil; 2012 Jan; 24(1):1-6. PubMed ID: 22188324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiologic effects of aspirin on myocardium: interaction with catecholamine.
    Regan TJ; Arena J; Torres RB; Bakth S
    Trans Assoc Am Physicians; 1988; 101():257-63. PubMed ID: 3269682
    [No Abstract]   [Full Text] [Related]  

  • 19. Measurements of electrophysiological effects of components of acute ischemia in Langendorff-perfused rat hearts using voltage-sensitive dye mapping.
    Nygren A; Baczkó I; Giles WR
    J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S113-S123. PubMed ID: 16686665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method for simultaneous epicardial monophasic action potential recordings from the dog heart in situ.
    Platou ES; Steinnes K; Refsum H
    Acta Pharmacol Toxicol (Copenh); 1984 Feb; 54(2):94-103. PubMed ID: 6711326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.