These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 9869546)

  • 21. An Educational Intervention Optimizes the Use of Arterial Blood Gas Determinations Across ICUs From Different Specialties: A Quality-Improvement Study.
    Martínez-Balzano CD; Oliveira P; O'Rourke M; Hills L; Sosa AF;
    Chest; 2017 Mar; 151(3):579-585. PubMed ID: 27818327
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intra-arterial blood gas monitoring system: more accurate values can be obtained.
    Kurahashi K; Hirose Y; Yamada H; Toyoshima M; Usuda Y
    J Clin Monit; 1996 Mar; 12(2):141-7. PubMed ID: 8823634
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A multiparameter sensor for continuous intra-arterial blood gas monitoring: a prospective evaluation.
    Venkatesh B; Clutton Brock TH; Hendry SP
    Crit Care Med; 1994 Apr; 22(4):588-94. PubMed ID: 8143468
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The PB3300 intraarterial blood gas monitoring system.
    Lumsden T; Marshall WR; Divers GA; Riccitelli SD
    J Clin Monit; 1994 Jan; 10(1):59-66. PubMed ID: 8126540
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Continuous neonatal blood gas monitoring using a multiparameter intra-arterial sensor.
    Morgan C; Newell SJ; Ducker DA; Hodgkinson J; White DK; Morley CJ; Church JM
    Arch Dis Child Fetal Neonatal Ed; 1999 Mar; 80(2):F93-8. PubMed ID: 10325783
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Clinical validation of a continuous intravascular neonatal blood gas sensor introduced through an umbilical artery catheter.
    Meyers PA; Worwa C; Trusty R; Mammel MC
    Respir Care; 2002 Jun; 47(6):682-7. PubMed ID: 12036438
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accuracy of Transcutaneous CO
    Lambert LL; Baldwin MB; Gonzalez CV; Lowe GR; Willis JR
    Respir Care; 2018 Jul; 63(7):907-912. PubMed ID: 29739856
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Performance of an in-vivo, continuous blood-gas monitor with disposable probe.
    Miller WW; Yafuso M; Yan CF; Hui HK; Arick S
    Clin Chem; 1987 Sep; 33(9):1538-42. PubMed ID: 3113766
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Continuous intra-arterial oxygen monitoring: accuracy and reliability in the surgical intensive care unit.
    Lemus JF; Kearney T; Margulies DR; Mackenzie DJ; Leyerle BJ; Shabot MM
    Am Surg; 1992 Dec; 58(12):740-2. PubMed ID: 1456597
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparing Central Venous Blood Gas to Arterial Blood Gas and Determining Its Utility in Critically Ill Patients: Narrative Review.
    Chong WH; Saha BK; Medarov BI
    Anesth Analg; 2021 Aug; 133(2):374-378. PubMed ID: 33780397
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Clinical evaluation--continuous real-time intra-arterial blood gas monitoring during anesthesia and surgery by fiber optic sensor.
    Smith BE; King PH; Schlain L
    Int J Clin Monit Comput; 1992; 9(1):45-52. PubMed ID: 1402303
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of arterial blood gas values on extubation decisions.
    Salam A; Smina M; Gada P; Tilluckdharry L; Upadya A; Amoateng-Adjepong Y; Manthous CA
    Respir Care; 2003 Nov; 48(11):1033-7. PubMed ID: 14585115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Continuous monitoring of critical patients with a newly developed pulmonary arterial catheter. A cost analysis].
    Boldt J; Heesen M; Müller M; Hempelmann G
    Anaesthesist; 1995 Jun; 44(6):423-8. PubMed ID: 7653794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clinical evaluation of a continuous intra-arterial blood gas system in critically ill patients.
    Roupie EE; Brochard L; Lemaire FJ
    Intensive Care Med; 1996 Nov; 22(11):1162-8. PubMed ID: 9120107
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of arterial blood gas values from venous blood gas values in patients with acute respiratory failure receiving mechanical ventilation.
    Chu YC; Chen CZ; Lee CH; Chen CW; Chang HY; Hsiue TR
    J Formos Med Assoc; 2003 Aug; 102(8):539-43. PubMed ID: 14569318
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Continuous measurement of blood gases using a combined electrochemical and spectrophotometric sensor.
    Venkatesh B; Clutton-Brock TH; Hendry SP
    J Med Eng Technol; 1994; 18(5):165-8. PubMed ID: 7776356
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brain parenchyma PO2, PCO2, and pH during and after hypoxic, ischemic brain insult in dogs.
    McKinley BA; Morris WP; Parmley CL; Butler BD
    Crit Care Med; 1996 Nov; 24(11):1858-68. PubMed ID: 8917037
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monitoring of pH and PCO2 in children using the Paratrend 7 in a peripheral vein.
    Tobias JD; Meyer DJ; Helikson MA
    Can J Anaesth; 1998 Jan; 45(1):81. PubMed ID: 27519039
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Continuous pH and Pco2 monitoring during respiratory failure in children with the Paratrend 7 inserted into the peripheral venous system.
    Tobias JD; Connors D; Strauser L; Johnson T
    J Pediatr; 2000 May; 136(5):623-7. PubMed ID: 10802494
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Continuous blood gas monitoring using an in-dwelling optode method: comparison to intermittent arterial blood gas sampling in ECMO patients.
    Rais-Bahrami K; Rivera O; Mikesell GT; Short BL
    J Perinatol; 2002 Sep; 22(6):472-4. PubMed ID: 12168125
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.