These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 98700)

  • 1. Genetic defects in DNA repair system and enhancement of intergenote transformation efficiency in Bacillus subtilis Marburg.
    Matsumoto K; Takahashi H; Saito H; Ikeda Y
    Mol Gen Genet; 1978 Jul; 162(3):229-35. PubMed ID: 98700
    [No Abstract]   [Full Text] [Related]  

  • 2. Interspecies transformation in Bacillus: mechanism of heterologous intergenote transformation.
    Harris-Warrick RM; Lederberg J
    J Bacteriol; 1978 Mar; 133(3):1246-53. PubMed ID: 417064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA repair and the evolution of transformation in the bacterium Bacillus subtilis.
    Michod RE; Wojciechowski MF; Hoelzer MA
    Genetics; 1988 Jan; 118(1):31-9. PubMed ID: 8608929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient cloning in Bacillus megaterium: comparison to Bacillus subtilis and Escherichia coli cloning hosts.
    Von Tersch MA; Robbins HL
    FEMS Microbiol Lett; 1990 Aug; 58(3):305-9. PubMed ID: 2121590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence homologies of glucose-dehydrogenases of Bacillus megaterium and Bacillus subtilis.
    Fortnagel P; Lampel KA; Neitzke KD; Freese E
    J Theor Biol; 1986 Jun; 120(4):489-97. PubMed ID: 3099087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Bacillus megaterium comE locus encodes a functional DNA uptake protein.
    Lammers M; Nahrstedt H; Meinhardt F
    J Basic Microbiol; 2004; 44(6):451-8. PubMed ID: 15558816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Polyethylene glycol induction of Bacillus megaterium protoplast transformation by plasmid DNA].
    Vorob'eva IP; Khmel' IA; Alfoldi L
    Dokl Akad Nauk SSSR; 1980; 251(4):977-80. PubMed ID: 6772419
    [No Abstract]   [Full Text] [Related]  

  • 8. Genetic and enzymic studies on the recombination process in Bacillus subtilis.
    Mazza G; Fortunato A; Ferrari E; Canosi U; Falaschi A; Polsinelli M
    Mol Gen Genet; 1975; 136(1):9-30. PubMed ID: 16094963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The repair of ultraviolet-damaged DNA in Bacillus subtilis.
    Filippov VD
    Sov Genet; 1974 Jan; 7(10):1304-11. PubMed ID: 4207570
    [No Abstract]   [Full Text] [Related]  

  • 10. Stable shuttle plasmid, pAC3, among Bacillus subtilis, B. megaterium and Escherichia coli.
    Moriyama H; Akamatsu T; Sekiguchi J
    Nucleic Acids Res; 1988 Sep; 16(17):8732. PubMed ID: 2843829
    [No Abstract]   [Full Text] [Related]  

  • 11. Repair of UV-damaged DNA by competent and incompetent Bacillus subtilis cells.
    Skavronskaya AG; Kiryushkina AA
    Sov Genet; 1973 Nov; 7(7):904-8. PubMed ID: 4204834
    [No Abstract]   [Full Text] [Related]  

  • 12. Gene dosage effect on the expression of the delta-endotoxin genes of Bacillus thuringiensis subsp. kurstaki in Bacillus subtilis and Bacillus megaterium.
    Shivakumar AG; Vanags RI; Wilcox DR; Katz L; Vary PS; Fox JL
    Gene; 1989 Jun; 79(1):21-31. PubMed ID: 2550328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultraviolet inactivation and excision-repair in Bacillus subtilis. II. Differential inactivation and differential repair of transforming markers.
    Bron S; Venema G
    Mutat Res; 1972 May; 15(1):11-22. PubMed ID: 4623568
    [No Abstract]   [Full Text] [Related]  

  • 14. Repair and subsequent fragmentation of deoxyribonucleic acid in ultraviolet-irradiated Bacillus subtilis recA.
    Hadden CT
    J Bacteriol; 1977 Dec; 132(3):856-61. PubMed ID: 411783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of UV induced DNA photoproducts from isolated and non-isolated developing bacterial forespores.
    Lindsay JA; Murrell WG
    Biochem Biophys Res Commun; 1983 Jun; 113(2):618-25. PubMed ID: 6409107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of natural transformation: testing the DNA repair hypothesis in Bacillus subtilis and Haemophilus influenzae.
    Redfield RJ
    Genetics; 1993 Apr; 133(4):755-61. PubMed ID: 8462839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultraviolet inactivation and excision-repair in Bacillus subtilis. IV. Integration and repair of ultraviolet-inactivated transforming DNA.
    Bron S; Venema G
    Mutat Res; 1972 Aug; 15(4):395-409. PubMed ID: 4625593
    [No Abstract]   [Full Text] [Related]  

  • 18. [DNA repair and genetic recombination in Bacillus subtilis (author's transl)].
    Shibata T; Saito H
    Tanpakushitsu Kakusan Koso; 1974 Aug; 19(8):597-609. PubMed ID: 4373788
    [No Abstract]   [Full Text] [Related]  

  • 19. Ultraviolet inactivation and excision-repair in Bacillus subtilis. I. Construction and characterization of a transformable eightfold auxotrophic strain and two ultraviolet-sensitive derivatives.
    Bron S; Venema G
    Mutat Res; 1972 May; 15(1):1-10. PubMed ID: 4623569
    [No Abstract]   [Full Text] [Related]  

  • 20. DNA repair in competent cells of Bacillus subtilis.
    Mita I; Sadaie Y; Kada T
    J Bacteriol; 1983 Aug; 155(2):933-6. PubMed ID: 6409889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.