BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 9870196)

  • 1. Pure pyrolytic carbon: preparation and properties of a new material, On-X carbon for mechanical heart valve prostheses.
    Ely JL; Emken MR; Accuntius JA; Wilde DS; Haubold AD; More RB; Bokros JC
    J Heart Valve Dis; 1998 Nov; 7(6):626-32. PubMed ID: 9870196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical performance of pyrolytic carbon in prosthetic heart valve applications.
    Cao H
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S32-49. PubMed ID: 8794031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue of isotropic pyrolytic carbon used in mechanical heart valves.
    Ma L; Sines G
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S59-64. PubMed ID: 8794033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Material properties, biocompatibility, and wear resistance of the Medtronic pyrolytic carbon.
    Leuer LH; Gross JM; Johnson KM
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S105-9; discussion 110. PubMed ID: 8803762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical cardiac valve prostheses: wear characteristics and magnitudes in three bileaflet valves.
    Elizondo DR; Boland ED; Ambrus JR; Kurk JL
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S115-23; discussion 144-8. PubMed ID: 8803764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the fractography of overload, stress corrosion, and cyclic fatigue failures in pyrolytic-carbon materials used in prosthetic heart-valve devices.
    Ritchie RO; Dauskardt RH; Pennisi FJ
    J Biomed Mater Res; 1992 Jan; 26(1):69-76. PubMed ID: 1577836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural integrity assessment of heart valve prostheses: a damage tolerance analysis of the CarboMedics Prosthetic Heart Valve.
    Ryder JK; Cao H
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S86-96. PubMed ID: 8803760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple and accurate fracture toughness testing methods for pyrolytic carbon/graphite composites used in heart-valve prostheses.
    Kruzic JJ; Kuskowski SJ; Ritchie RO
    J Biomed Mater Res A; 2005 Sep; 74(3):461-4. PubMed ID: 15973730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the durability of pyrolytic carbon in vivo.
    Haubold AD
    Med Prog Technol; 1994; 20(3-4):201-8. PubMed ID: 7877566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatigue and fracture of pyrolytic carbon: a damage- tolerant approach to structural integrity and life prediction in "ceramic" heart valve prostheses.
    Ritchie RO
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S9-31. PubMed ID: 8794026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early wear development in a novel mechanical heart valve prosthesis made from polymeric materials.
    Medart D; Steinseifer U; Reul H; Schmitz-Rode T
    J Heart Valve Dis; 2006 Sep; 15(5):710-5. PubMed ID: 17044379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early wear development in a novel mechanical heart valve prosthesis made from polymeric materials.
    Medart D; Steinseifer U; Reul H; Schmitz-Rode T
    J Heart Valve Dis; 2006 Jul; 15(4):557-62. PubMed ID: 16901054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of repetitive impact on the mechanical strength of pyrolytic carbon.
    Kepner J; Cao H
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S50-8. PubMed ID: 8794027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Durability of pyrolytic carbon-containing heart valve prostheses.
    Schoen FJ; Titus JL; Lawrie GM
    J Biomed Mater Res; 1982 Sep; 16(5):559-70. PubMed ID: 7130212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wear assessment in bileaflet heart valves.
    Arru P; Rinaldi S; Stacchino C; Vallana F
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S133-43; discussion 144-8. PubMed ID: 8803766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of cavitation on pyrolytic carbon in vitro.
    Haubold AD; Ely JL; Chahine GL
    J Heart Valve Dis; 1994 May; 3(3):318-23. PubMed ID: 8087272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural failure of pyrolytic carbon heart valves.
    Richard G; Cao H
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S79-85. PubMed ID: 8803759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic fatigue-crack propagation, stress-corrosion, and fracture-toughness behavior in pyrolytic carbon-coated graphite for prosthetic heart valve applications.
    Ritchie RO; Dauskardt RH; Yu WK; Brendzel AM
    J Biomed Mater Res; 1990 Feb; 24(2):189-206. PubMed ID: 2329114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of the cavitation potential of prosthetic heart valves based on valve closing dynamics.
    Zapanta CM; Stinebring DR; Deutsch S; Geselowitz DB; Tarbell JM
    J Heart Valve Dis; 1998 Nov; 7(6):655-67. PubMed ID: 9870200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic fatigue and fracture in pyrolytic carbon-coated graphite mechanical heart-valve prostheses: role of small cracks in life prediction.
    Dauskardt RH; Ritchie RO; Takemoto JK; Brendzel AM
    J Biomed Mater Res; 1994 Jul; 28(7):791-804. PubMed ID: 8083247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.