These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 9870196)

  • 21. Pyrolytic carbons in mechanical heart valves.
    Haubold A; Lankford J
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S1. PubMed ID: 8794038
    [No Abstract]   [Full Text] [Related]  

  • 22. Cavitation potential of pyrolytic carbon heart valve prostheses: a review and current status.
    Hwang NH
    J Heart Valve Dis; 1998 Mar; 7(2):140-50. PubMed ID: 9587853
    [No Abstract]   [Full Text] [Related]  

  • 23. Cavitation damage of pyrolytic carbon in mechanical heart valves.
    Kafesjian R; Howanec M; Ward GD; Diep L; Wagstaff LS; Rhee R
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S2-7. PubMed ID: 8061867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unalloyed pyrolytic carbon for implanted mechanical heart valves.
    Ma L; Sines GH
    J Heart Valve Dis; 1999 Sep; 8(5):578-85. PubMed ID: 10517402
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finite element analysis of indentation tests on pyrolytic carbon.
    Gilpin CB; Haubold AD; Ely JL
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S72-8. PubMed ID: 8794040
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thrombogenic evaluation of two mechanical heart valve prostheses using a new in-vitro test system.
    Kim CH; Steinseifer U; Schmitz-Rode T
    J Heart Valve Dis; 2009 Mar; 18(2):207-13. PubMed ID: 19455896
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pyrolytic carbon indentation crack morphology.
    Ely JL; Stupka J; Haubold AD
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S65-71. PubMed ID: 8794035
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo comparison of hemocompatibility of materials used in mechanical heart valves.
    Yang Y; Franzen SF; Olin CL
    J Heart Valve Dis; 1996 Sep; 5(5):532-7. PubMed ID: 8894994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The new St. Jude Medical regent mechanical heart valve: laboratory measurements of hydrodynamic performance.
    Walker DK; Brendzel AM; Scotten LN
    J Heart Valve Dis; 1999 Nov; 8(6):687-96. PubMed ID: 10616249
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biofilm formation on pyrolytic carbon heart valves: influence of surface free energy, roughness, and bacterial species.
    Litzler PY; Benard L; Barbier-Frebourg N; Vilain S; Jouenne T; Beucher E; Bunel C; Lemeland JF; Bessou JP
    J Thorac Cardiovasc Surg; 2007 Oct; 134(4):1025-32. PubMed ID: 17903524
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new design for polyurethane heart valves.
    Butterfield M; Wheatley DJ; Williams DF; Fisher J
    J Heart Valve Dis; 2001 Jan; 10(1):105-10. PubMed ID: 11206756
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface engineering of artificial heart valve disks using nanostructured thin films deposited by chemical vapour deposition and sol-gel methods.
    Jackson MJ; Robinson GM; Ali N; Kousar Y; Mei S; Gracio J; Taylor H; Ahmed W
    J Med Eng Technol; 2006; 30(5):323-9. PubMed ID: 16980288
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accelerated life testing of prosthetic heart valves.
    Fettel BE; Johnston DR; Morris PE
    Med Instrum; 1980; 14(3):161-4. PubMed ID: 7382899
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Platelet responses to silicon-alloyed pyrolytic carbons.
    Goodman SL; Scranton VL; Brendzel AM
    J Biomed Mater Res A; 2007 Oct; 83(1):64-9. PubMed ID: 17380499
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cyclic fatigue and fracture in pyrolytic carbon-coated graphite mechanical heart-valve prostheses: role of small crack in life prediction.
    Lankford J; Sines G
    J Biomed Mater Res; 1995 May; 29(5):673-8. PubMed ID: 7503863
    [No Abstract]   [Full Text] [Related]  

  • 36. In vitro testing of heart valve wear outside of the manufacturers laboratory--requirements and controversies.
    Reul H; Eichler M; Potthast K; Schmitz C; Rau G
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S97-103; discussion 103-4. PubMed ID: 8803761
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ex-vivo characterization of three Björk-Shiley Delrin heart valves.
    Farè S; Brunella MF; Bruschi G; Vitali E
    J Heart Valve Dis; 2008 May; 17(3):325-31. PubMed ID: 18592930
    [TBL] [Abstract][Full Text] [Related]  

  • 38. St Jude Epic heart valve bioprostheses versus native human and porcine aortic valves - comparison of mechanical properties.
    Kalejs M; Stradins P; Lacis R; Ozolanta I; Pavars J; Kasyanov V
    Interact Cardiovasc Thorac Surg; 2009 May; 8(5):553-6. PubMed ID: 19190025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Introduction of a flexible polymeric heart valve prosthesis with special design for aortic position.
    Daebritz SH; Fausten B; Hermanns B; Schroeder J; Groetzner J; Autschbach R; Messmer BJ; Sachweh JS
    Eur J Cardiothorac Surg; 2004 Jun; 25(6):946-52. PubMed ID: 15144993
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and evaluation of a swine model to assess the preclinical safety of mechanical heart valves.
    Grehan JF; Hilbert SL; Ferrans VJ; Droel JS; Salerno CT; Bianco RW
    J Heart Valve Dis; 2000 Sep; 9(5):710-9; discussion 719-20. PubMed ID: 11041189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.