These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 9870705)

  • 41. A mutation in a mitochondrial ABC transporter results in mitochondrial dysfunction through oxidative damage of mitochondrial DNA.
    Senbongi H; Ling F; Shibata T
    Mol Gen Genet; 1999 Oct; 262(3):426-36. PubMed ID: 10589829
    [TBL] [Abstract][Full Text] [Related]  

  • 42. UV-induced reversion of his4 frameshift mutations in rad6, rev1, and rev3 mutants of yeast.
    Lawrence CW; O'Brien T; Bond J
    Mol Gen Genet; 1984; 195(3):487-90. PubMed ID: 6381967
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Carcinogen-induced frameshift mutagenesis in repetitive sequences.
    Lambert IB; Napolitano RL; Fuchs RP
    Proc Natl Acad Sci U S A; 1992 Feb; 89(4):1310-4. PubMed ID: 1741385
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Glucose starvation as a selective tool for the study of adaptive mutations in Saccharomyces cerevisiae.
    Heidenreich E; Steinboeck F
    J Microbiol Methods; 2017 Jan; 132():4-8. PubMed ID: 27838539
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Carcinogen-induced mutation spectrum in wild-type, uvrA and umuC strains of Escherichia coli. Strain specificity and mutation-prone sequences.
    Koffel-Schwartz N; Verdier JM; Bichara M; Freund AM; Daune MP; Fuchs RP
    J Mol Biol; 1984 Jul; 177(1):33-51. PubMed ID: 6379196
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genotoxicity of stannous chloride in yeast and bacteria.
    Pungartnik C; Viau C; Picada J; Caldeira-de-Araújo A; Henriques JA; Brendel M
    Mutat Res; 2005 Jun; 583(2):146-57. PubMed ID: 15927871
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The GEF1 gene of Saccharomyces cerevisiae encodes an integral membrane protein; mutations in which have effects on respiration and iron-limited growth.
    Greene JR; Brown NH; DiDomenico BJ; Kaplan J; Eide DJ
    Mol Gen Genet; 1993 Dec; 241(5-6):542-53. PubMed ID: 7505388
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mitochondrial genetics. XI. Mutations at the mitochondrial locus omega affecting the recombination of mitochondrial genes in Saccharomyces cerevisiae.
    Dujon B; Bolotin-Fukuhara M; Coen D; Deutsch J; Netter P; Slonimski PP; Weill L
    Mol Gen Genet; 1976 Jan; 143(2):131-65. PubMed ID: 765750
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Base-substitution and frameshift mutagenesis by sodium chloride and potassium chloride in Saccharomyces cerevisiae.
    Parker KR; von Borstel RC
    Mutat Res; 1987 Sep; 189(1):11-4. PubMed ID: 3306362
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of a new nuclear gene (CEM1) encoding a protein homologous to a beta-keto-acyl synthase which is essential for mitochondrial respiration in Saccharomyces cerevisiae.
    Harington A; Herbert CJ; Tung B; Getz GS; Slonimski PP
    Mol Microbiol; 1993 Aug; 9(3):545-55. PubMed ID: 8412701
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Abasic sites linked to dUTP incorporation in DNA are a major cause of spontaneous mutations in absence of base excision repair and Rad17-Mec3-Ddc1 (9-1-1) DNA damage checkpoint clamp in Saccharomyces cerevisiae.
    Collura A; Kemp PA; Boiteux S
    DNA Repair (Amst); 2012 Mar; 11(3):294-303. PubMed ID: 22226374
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transcription-associated mutagenesis in yeast is directly proportional to the level of gene expression and influenced by the direction of DNA replication.
    Kim N; Abdulovic AL; Gealy R; Lippert MJ; Jinks-Robertson S
    DNA Repair (Amst); 2007 Sep; 6(9):1285-96. PubMed ID: 17398168
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mutagenic effects of abasic and oxidized abasic lesions in Saccharomyces cerevisiae.
    Kow YW; Bao G; Minesinger B; Jinks-Robertson S; Siede W; Jiang YL; Greenberg MM
    Nucleic Acids Res; 2005; 33(19):6196-202. PubMed ID: 16257982
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Induction of respiration-deficient mutants in Saccharomyces cerevisiae by chelerythrine.
    Krivjanský V; Obernauerová M; Ulrichová J; Simánek V; Subík J
    FEMS Microbiol Lett; 1994 Jul; 120(1-2):87-91. PubMed ID: 8056299
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of the CDC2 gene on adaptive mutation in the yeast Saccharomyces cerevisiae.
    Baranowska H; Policińska Z; Jachymczyk WJ
    Curr Genet; 1995 Nov; 28(6):521-5. PubMed ID: 8593682
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An examination of adaptive reversion in Saccharomyces cerevisiae.
    Steele DF; Jinks-Robertson S
    Genetics; 1992 Sep; 132(1):9-21. PubMed ID: 1398066
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Topical reversion at the HIS1 locus of Saccharomyces cerevisiae. A tale of three mutants.
    von Borstel RC; Savage EA; Wang Q; Hennig UG; Ritzel RG; Lee GS; Hamilton MD; Chrenek MA; Tomaszewski RW; Higgins JA; Tenove CJ; Liviero L; Hastings PJ; Korch CT; Steinberg CM
    Genetics; 1998 Apr; 148(4):1647-54. PubMed ID: 9560384
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adaptive mutation in Saccharomyces cerevisiae.
    Heidenreich E
    Crit Rev Biochem Mol Biol; 2007; 42(4):285-311. PubMed ID: 17687670
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Selection-induced mutations.
    Hall BG
    Curr Opin Genet Dev; 1992 Dec; 2(6):943-6. PubMed ID: 1477539
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The amino acid nutrition of respiration deficient and respiration competent Saccharomyces.
    SARACHEK A; BISH JT
    Antonie Van Leeuwenhoek; 1963; 29():112-20. PubMed ID: 13991450
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.