BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 9870952)

  • 21. Axon trajectories and pattern of terminal arborization during the prenatal development of the cat's retinogeniculate pathway.
    Sretavan DW; Shatz CJ
    J Comp Neurol; 1987 Jan; 255(3):386-400. PubMed ID: 3819020
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Early divergence of magnocellular and parvocellular functional subsystems in the embryonic primate visual system.
    Meissirel C; Wikler KC; Chalupa LM; Rakic P
    Proc Natl Acad Sci U S A; 1997 May; 94(11):5900-5. PubMed ID: 9159172
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The synaptic basis of activity-dependent eye-specific competition.
    Zhang C; Yadav S; Speer CM
    Cell Rep; 2023 Feb; 42(2):112085. PubMed ID: 36753422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of primary visual projections occurs entirely postnatally in the fat-tailed dunnart, a marsupial mouse, Sminthopsis crassicaudata.
    Dunlop SA; Tee LB; Lund RD; Beazley LD
    J Comp Neurol; 1997 Jul; 384(1):26-40. PubMed ID: 9214538
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Competitive interactions between retinal ganglion cells during prenatal development.
    Shatz CJ
    J Neurobiol; 1990 Jan; 21(1):197-211. PubMed ID: 2181063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Abnormal development of the retinogeniculate projection in Siamese cats.
    Kliot M; Shatz CJ
    J Neurosci; 1985 Oct; 5(10):2641-53. PubMed ID: 2995604
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The prenatal development of the cat's retinogeniculate pathway.
    Shatz CJ
    J Neurosci; 1983 Mar; 3(3):482-99. PubMed ID: 6402566
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pattern formation by retinal afferents in the ferret lateral geniculate nucleus: developmental segregation and the role of N-methyl-D-aspartate receptors.
    Hahm JO; Cramer KS; Sur M
    J Comp Neurol; 1999 Aug; 411(2):327-45. PubMed ID: 10404257
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Limited functional convergence of eye-specific inputs in the retinogeniculate pathway of the mouse.
    Bauer J; Weiler S; Fernholz MHP; Laubender D; Scheuss V; Hübener M; Bonhoeffer T; Rose T
    Neuron; 2021 Aug; 109(15):2457-2468.e12. PubMed ID: 34146468
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Specificity of retinal ganglion cell projections in the embryonic rhesus monkey.
    Chalupa LM; Meissirel C; Lia B
    Perspect Dev Neurobiol; 1996; 3(3):223-31. PubMed ID: 8931096
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of spontaneous retinal activity before eye opening in the maturation of form and function in the retinogeniculate pathway of the ferret.
    Cook PM; Prusky G; Ramoa AS
    Vis Neurosci; 1999; 16(3):491-501. PubMed ID: 10349970
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Morphology of retinogeniculate X and Y axon arbors in cats raised with binocular lid suture.
    Raczkowski D; Uhlrich DJ; Sherman SM
    J Neurophysiol; 1988 Dec; 60(6):2152-67. PubMed ID: 2466965
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Organization of retinogeniculate projections in turtles of the genera Pseudemys and Chrysemys.
    Ulinski PS; Nautiyal J
    J Comp Neurol; 1988 Oct; 276(1):92-112. PubMed ID: 3192765
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prenatal disruption of binocular interactions creates novel lamination in the cat's lateral geniculate nucleus.
    Garraghty PE; Shatz CJ; Sur M
    Vis Neurosci; 1988; 1(1):93-102. PubMed ID: 3154791
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural and functional composition of the developing retinogeniculate pathway in the mouse.
    Jaubert-Miazza L; Green E; Lo FS; Bui K; Mills J; Guido W
    Vis Neurosci; 2005; 22(5):661-76. PubMed ID: 16332277
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prenatal development of functional connections in the cat's retinogeniculate pathway.
    Shatz CJ; Kirkwood PA
    J Neurosci; 1984 May; 4(5):1378-97. PubMed ID: 6726337
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mapping labels in the human developing visual system and the evolution of binocular vision.
    Lambot MA; Depasse F; Noel JC; Vanderhaeghen P
    J Neurosci; 2005 Aug; 25(31):7232-7. PubMed ID: 16079405
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ERK signaling is required for eye-specific retino-geniculate segregation.
    Naska S; Cenni MC; Menna E; Maffei L
    Development; 2004 Aug; 131(15):3559-70. PubMed ID: 15215205
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prenatal development of axon outgrowth and connectivity in the ferret visual system.
    Johnson JK; Casagrande VA
    Vis Neurosci; 1993; 10(1):117-30. PubMed ID: 8424921
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chiasmatic course of temporal retinal axons in the developing ferret.
    Baker GE; Reese BE
    J Comp Neurol; 1993 Apr; 330(1):95-104. PubMed ID: 8468406
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.