These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

614 related articles for article (PubMed ID: 9870957)

  • 41. Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro.
    Hájos N; Pálhalmi J; Mann EO; Németh B; Paulsen O; Freund TF
    J Neurosci; 2004 Oct; 24(41):9127-37. PubMed ID: 15483131
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hippocampal sharp waves: their origin and significance.
    Buzsáki G
    Brain Res; 1986 Nov; 398(2):242-52. PubMed ID: 3026567
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Relationship between membrane potential oscillations and rhythmic discharges in identified hippocampal theta-related cells.
    Bland BH; Konopacki J; Dyck RH
    J Neurophysiol; 2002 Dec; 88(6):3046-66. PubMed ID: 12466429
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Deciphering how interneuron specific 3 cells control oriens lacunosum-moleculare cells to contribute to circuit function.
    Guet-McCreight A; Skinner FK
    J Neurophysiol; 2021 Oct; 126(4):997-1014. PubMed ID: 34379493
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sustained activation of hippocampal pyramidal cells by 'space clamping' in a running wheel.
    Czurkó A; Hirase H; Csicsvari J; Buzsáki G
    Eur J Neurosci; 1999 Jan; 11(1):344-52. PubMed ID: 9987037
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A model of cholinergic suppression of hippocampal ripples through disruption of balanced excitation/inhibition.
    Melonakos ED; White JA; Fernandez FR
    Hippocampus; 2019 Sep; 29(9):773-786. PubMed ID: 30417958
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Selective reduction of AMPA currents onto hippocampal interneurons impairs network oscillatory activity.
    Caputi A; Fuchs EC; Allen K; Le Magueresse C; Monyer H
    PLoS One; 2012; 7(6):e37318. PubMed ID: 22675480
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Neural mechanism underlying generation of synchronous oscillations in hippocampal network].
    Fujiwara-Tsukamoto Y; Isomura Y
    Brain Nerve; 2008 Jul; 60(7):755-62. PubMed ID: 18646615
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hippocampal pyramidal cell-interneuron spike transmission is frequency dependent and responsible for place modulation of interneuron discharge.
    Marshall L; Henze DA; Hirase H; Leinekugel X; Dragoi G; Buzsáki G
    J Neurosci; 2002 Jan; 22(2):RC197. PubMed ID: 11784809
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spatial selectivity and theta phase precession in CA1 interneurons.
    Ego-Stengel V; Wilson MA
    Hippocampus; 2007; 17(2):161-74. PubMed ID: 17183531
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Developmental emergence of hippocampal fast-field "ripple" oscillations in the behaving rat pups.
    Buhl DL; Buzsáki G
    Neuroscience; 2005; 134(4):1423-30. PubMed ID: 16039793
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phase precession in hippocampal interneurons showing strong functional coupling to individual pyramidal cells.
    Maurer AP; Cowen SL; Burke SN; Barnes CA; McNaughton BL
    J Neurosci; 2006 Dec; 26(52):13485-92. PubMed ID: 17192431
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Oscillatory activity in developing prefrontal networks results from theta-gamma-modulated synaptic inputs.
    Bitzenhofer SH; Sieben K; Siebert KD; Spehr M; Hanganu-Opatz IL
    Cell Rep; 2015 Apr; 11(3):486-97. PubMed ID: 25865885
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hippocampal Ripple Oscillations and Inhibition-First Network Models: Frequency Dynamics and Response to GABA Modulators.
    Donoso JR; Schmitz D; Maier N; Kempter R
    J Neurosci; 2018 Mar; 38(12):3124-3146. PubMed ID: 29453207
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Different patterns of synaptic transmission revealed between hippocampal CA3 stratum oriens and stratum lucidum interneurons and their pyramidal cell targets.
    Aaron GB; Wilcox KS; Dichter MA
    Neuroscience; 2003; 117(1):169-81. PubMed ID: 12605903
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Patterned activation of hippocampal network (approximately 10 Hz) during in vitro sharp wave-ripples.
    Papatheodoropoulos C
    Neuroscience; 2010 Jun; 168(2):429-42. PubMed ID: 20371272
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Limbic gamma rhythms. II. Synaptic and intrinsic mechanisms underlying spike doublets in oscillating subicular neurons.
    Stanford IM; Traub RD; Jefferys JG
    J Neurophysiol; 1998 Jul; 80(1):162-71. PubMed ID: 9658038
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synaptic and nonsynaptic contributions to giant ipsps and ectopic spikes induced by 4-aminopyridine in the hippocampus in vitro.
    Traub RD; Bibbig R; Piechotta A; Draguhn R; Schmitz D
    J Neurophysiol; 2001 Mar; 85(3):1246-56. PubMed ID: 11247993
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Simulation of gamma rhythms in networks of interneurons and pyramidal cells.
    Traub RD; Jefferys JG; Whittington MA
    J Comput Neurosci; 1997 Apr; 4(2):141-50. PubMed ID: 9154520
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synaptic kainate receptors tune oriens-lacunosum moleculare interneurons to operate at theta frequency.
    Goldin M; Epsztein J; Jorquera I; Represa A; Ben-Ari Y; Crépel V; Cossart R
    J Neurosci; 2007 Sep; 27(36):9560-72. PubMed ID: 17804617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.