These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
73 related articles for article (PubMed ID: 9871116)
1. Glucose repression on RIM1, a gene encoding a mitochondrial single-stranded DNA-binding protein, in Saccharomyces cerevisiae: a possible regulation at pre-mRNA splicing. Li Z; Ling F; Shibata T Curr Genet; 1998 Dec; 34(5):351-9. PubMed ID: 9871116 [TBL] [Abstract][Full Text] [Related]
2. A single-stranded DNA binding protein required for mitochondrial DNA replication in S. cerevisiae is homologous to E. coli SSB. Van Dyck E; Foury F; Stillman B; Brill SJ EMBO J; 1992 Sep; 11(9):3421-30. PubMed ID: 1324172 [TBL] [Abstract][Full Text] [Related]
3. The mitochondrial single-stranded DNA binding protein from S. cerevisiae, Rim1, does not form stable homo-tetramers and binds DNA as a dimer of dimers. Singh SP; Kukshal V; De Bona P; Antony E; Galletto R Nucleic Acids Res; 2018 Aug; 46(14):7193-7205. PubMed ID: 29931186 [TBL] [Abstract][Full Text] [Related]
4. Mitochondrial protein synthesis is not required for efficient excision of intron aI5 beta from COX1 pre-mRNA in Saccharomyces cerevisiae. Johnson CH; McEwen JE Mol Gen Genet; 1997 Sep; 256(1):88-91. PubMed ID: 9341683 [TBL] [Abstract][Full Text] [Related]
5. Regulation of the proteinase B structural gene PRB1 in Saccharomyces cerevisiae. Naik RR; Nebes V; Jones EW J Bacteriol; 1997 Mar; 179(5):1469-74. PubMed ID: 9045801 [TBL] [Abstract][Full Text] [Related]
6. Characterization of Hex2 protein, a negative regulatory element necessary for glucose repression in yeast. Niederacher D; Entian KD Eur J Biochem; 1991 Sep; 200(2):311-9. PubMed ID: 1889400 [TBL] [Abstract][Full Text] [Related]
7. Differential post-transcriptional regulation of yeast mRNAs in response to high and low glucose concentrations. Yin Z; Hatton L; Brown AJ Mol Microbiol; 2000 Feb; 35(3):553-65. PubMed ID: 10672178 [TBL] [Abstract][Full Text] [Related]
8. SRN1, a yeast gene involved in RNA processing, is identical to HEX2/REG1, a negative regulator in glucose repression. Tung KS; Norbeck LL; Nolan SL; Atkinson NS; Hopper AK Mol Cell Biol; 1992 Jun; 12(6):2673-80. PubMed ID: 1588964 [TBL] [Abstract][Full Text] [Related]
9. Constitutive glucose-induced activation of the Ras-cAMP pathway and aberrant stationary-phase entry on a glucose-containing medium in the Saccharomyces cerevisiae glucose-repression mutant hex2. Dumortier F; Argüelles JC; Thevelein JM Microbiology (Reading); 1995 Jul; 141 ( Pt 7)():1559-66. PubMed ID: 7551024 [TBL] [Abstract][Full Text] [Related]
10. Two adjacent nuclear genes, ISF1 and NAM7/UPF1, cooperatively participate in mitochondrial functions in Saccharomyces cerevisiae. Altamura N; Dujardin G; Groudinsky O; Slonimski PP Mol Gen Genet; 1994 Jan; 242(1):49-56. PubMed ID: 7506349 [TBL] [Abstract][Full Text] [Related]
11. The Saccharomyces cerevisiae gene CDC40/PRP17 controls cell cycle progression through splicing of the ANC1 gene. Dahan O; Kupiec M Nucleic Acids Res; 2004; 32(8):2529-40. PubMed ID: 15133121 [TBL] [Abstract][Full Text] [Related]
12. The Sko1p repressor and Gcn4p activator antagonistically modulate stress-regulated transcription in Saccharomyces cerevisiae. Pascual-Ahuir A; Serrano R; Proft M Mol Cell Biol; 2001 Jan; 21(1):16-25. PubMed ID: 11113177 [TBL] [Abstract][Full Text] [Related]
13. Genetic interactions between REG1/HEX2 and GLC7, the gene encoding the protein phosphatase type 1 catalytic subunit in Saccharomyces cerevisiae. Huang D; Chun KT; Goebl MG; Roach PJ Genetics; 1996 May; 143(1):119-27. PubMed ID: 8722767 [TBL] [Abstract][Full Text] [Related]
14. Dynamical remodeling of the transcriptome during short-term anaerobiosis in Saccharomyces cerevisiae: differential response and role of Msn2 and/or Msn4 and other factors in galactose and glucose media. Lai LC; Kosorukoff AL; Burke PV; Kwast KE Mol Cell Biol; 2005 May; 25(10):4075-91. PubMed ID: 15870279 [TBL] [Abstract][Full Text] [Related]
15. Molecular characterization of the yeast meiotic regulatory gene RIM1. Su SS; Mitchell AP Nucleic Acids Res; 1993 Aug; 21(16):3789-97. PubMed ID: 8367297 [TBL] [Abstract][Full Text] [Related]
16. The Tup1-Ssn6 general repressor is involved in repression of IME1 encoding a transcriptional activator of meiosis in Saccharomyces cerevisiae. Mizuno T; Nakazawa N; Remgsamrarn P; Kunoh T; Oshima Y; Harashima S Curr Genet; 1998 Apr; 33(4):239-47. PubMed ID: 9560430 [TBL] [Abstract][Full Text] [Related]
17. Glucose-dependent turnover of the mRNAs encoding succinate dehydrogenase peptides in Saccharomyces cerevisiae: sequence elements in the 5' untranslated region of the Ip mRNA play a dominant role. Cereghino GP; Atencio DP; Saghbini M; Beiner J; Scheffler IE Mol Biol Cell; 1995 Sep; 6(9):1125-43. PubMed ID: 8534911 [TBL] [Abstract][Full Text] [Related]
18. A Saccharomyces cerevisiae mitochondrial DNA fragment activates Reg1p-dependent glucose-repressible transcription in the nucleus. Santangelo GM; Tornow J Curr Genet; 1997 Dec; 32(6):389-98. PubMed ID: 9388294 [TBL] [Abstract][Full Text] [Related]
19. Inactivation of the UAS1 of STA1 by glucose and STA10 and identification of two loci, SNS1 and MSS1, involved in STA10-dependent repression in Saccharomyces cerevisiae. Ahn JH; Park SH; Kang HS Mol Gen Genet; 1995 Mar; 246(5):529-37. PubMed ID: 7700227 [TBL] [Abstract][Full Text] [Related]
20. MIG1-dependent and MIG1-independent glucose regulation of MAL gene expression in Saccharomyces cerevisiae. Hu Z; Nehlin JO; Ronne H; Michels CA Curr Genet; 1995 Aug; 28(3):258-66. PubMed ID: 8529272 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]