These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 9871367)

  • 1. Changes in protein interactions of cell cycle-related genes during the dormancy-to-growth transition in pea axillary buds.
    Shimizu S; Mori H
    Plant Cell Physiol; 1998 Oct; 39(10):1073-9. PubMed ID: 9871367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of cycles of dormancy and growth in pea axillary buds based on mRNA accumulation patterns of cell cycle-related genes.
    Shimizu S; Mori H
    Plant Cell Physiol; 1998 Mar; 39(3):255-62. PubMed ID: 9588023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell cycle regulation during growth-dormancy cycles in pea axillary buds.
    Devitt ML; Stafstrom JP
    Plant Mol Biol; 1995 Oct; 29(2):255-65. PubMed ID: 7579177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dormancy-associated gene expression in pea axillary buds. Cloning and expression of PsDRM1 and PsDRM2.
    Stafstrom JP; Ripley BD; Devitt ML; Drake B
    Planta; 1998 Aug; 205(4):547-52. PubMed ID: 9684359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two novel transcripts expressed in pea dormant axillary buds.
    Madoka Y; Mori H
    Plant Cell Physiol; 2000 Mar; 41(3):274-81. PubMed ID: 10805590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acropetal disappearance of PsAD1 protein in pea axillary buds after the release of apical dominance.
    Madoka Y; Mori H
    Plant Cell Physiol; 2000 May; 41(5):556-64. PubMed ID: 10929938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PsRBR1 encodes a pea retinoblastoma-related protein that is phosphorylated in axillary buds during dormancy-to-growth transition.
    Shimizu-Sato S; Ike Y; Mori H
    Plant Mol Biol; 2008 Jan; 66(1-2):125-35. PubMed ID: 18034314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of a ribosomal protein gene in axillary buds of pea seedlings.
    Stafstrom JP; Sussex IM
    Plant Physiol; 1992 Nov; 100(3):1494-502. PubMed ID: 16653149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trehalose 6-phosphate is involved in triggering axillary bud outgrowth in garden pea (Pisum sativum L.).
    Fichtner F; Barbier FF; Feil R; Watanabe M; Annunziata MG; Chabikwa TG; Höfgen R; Stitt M; Beveridge CA; Lunn JE
    Plant J; 2017 Nov; 92(4):611-623. PubMed ID: 28869799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human and plant proliferating-cell nuclear antigen have a highly conserved binding site for the p53-inducible gene product p21WAF1.
    Ball KL; Lane DP
    Eur J Biochem; 1996 May; 237(3):854-61. PubMed ID: 8647134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo transcriptome assembly reveals high transcriptional complexity in Pisum sativum axillary buds and shows rapid changes in expression of diurnally regulated genes.
    Kerr SC; Gaiti F; Beveridge CA; Tanurdzic M
    BMC Genomics; 2017 Mar; 18(1):221. PubMed ID: 28253862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterns of protein synthesis in dormant and growing vegetative buds of pea.
    Stafstrom JP; Sussex IM
    Planta; 1988 Dec; 176(4):497-505. PubMed ID: 24220946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auxin flow-mediated competition between axillary buds to restore apical dominance.
    Balla J; Medveďová Z; Kalousek P; Matiješčuková N; Friml J; Reinöhl V; Procházka S
    Sci Rep; 2016 Nov; 6():35955. PubMed ID: 27824063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ICK1, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid.
    Wang H; Qi Q; Schorr P; Cutler AJ; Crosby WL; Fowke LC
    Plant J; 1998 Aug; 15(4):501-10. PubMed ID: 9753775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Initial Bud Outgrowth Occurs Independent of Auxin Flow from Out of Buds.
    Chabikwa TG; Brewer PB; Beveridge CA
    Plant Physiol; 2019 Jan; 179(1):55-65. PubMed ID: 30404820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of gene functions associated to active and dormant buds in Arabidopsis.
    González-Grandío E; Cubas P
    Plant Signal Behav; 2014; 9(2):e27994. PubMed ID: 24518068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental analysis of the early steps in strigolactone-mediated axillary bud dormancy in rice.
    Luo L; Takahashi M; Kameoka H; Qin R; Shiga T; Kanno Y; Seo M; Ito M; Xu G; Kyozuka J
    Plant J; 2019 Mar; 97(6):1006-1021. PubMed ID: 30740793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PCNA in situ hybridization: a novel and reliable tool for detection of dynamic changes in proliferative activity.
    Köhler T; Pröls F; Brand-Saberi B
    Histochem Cell Biol; 2005 Mar; 123(3):315-27. PubMed ID: 15616846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of DRGs, developmentally regulated GTP-binding proteins, from pea and Arabidopsis.
    Devitt ML; Maas KJ; Stafstrom JP
    Plant Mol Biol; 1999 Jan; 39(1):75-82. PubMed ID: 10080710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome analysis of chestnut (Castanea sativa) tree buds suggests a putative role for epigenetic control of bud dormancy.
    Santamaría ME; Rodríguez R; Cañal MJ; Toorop PE
    Ann Bot; 2011 Sep; 108(3):485-98. PubMed ID: 21803738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.