BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 9871767)

  • 1. Determination of 6s-trans conformation of retinal chromophore in sensory rhodopsin I and phoborhodopsin.
    Wada A; Akai A; Goshima T; Takahashi T; Ito M
    Bioorg Med Chem Lett; 1998 Jun; 8(11):1365-8. PubMed ID: 9871767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-trans/13-cis isomerization of retinal is required for phototaxis signaling by sensory rhodopsins in Halobacterium halobium.
    Yan B; Takahashi T; Johnson R; Derguini F; Nakanishi K; Spudich JL
    Biophys J; 1990 Apr; 57(4):807-14. PubMed ID: 2344465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape of the chromophore binding site in pharaonis phoborhodopsin from a study using retinal analogs.
    Hirayama J; Imamoto Y; Shichida Y; Yoshizawa T; Asato AE; Liu RS; Kamo N
    Photochem Photobiol; 1994 Oct; 60(4):388-93. PubMed ID: 7991666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromophore of sensory rhodopsin II from Halobacterium halobium.
    Scharf B; Hess B; Engelhard M
    Biochemistry; 1992 Dec; 31(49):12486-92. PubMed ID: 1463734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reason for the lack of light-dark adaptation in pharaonis phoborhodopsin: reconstitution with 13-cis-retinal.
    Hirayma J; Kamo N; Imamoto Y; Shichida Y; Yoshizawa T
    FEBS Lett; 1995 May; 364(2):168-70. PubMed ID: 7750563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity increase in the photophobic response of Halobacterium halobium reconstituted with retinal analogs: a novel interpretation for the fluence-response relationship and a kinetic modeling.
    Takahashi T; Yan B; Spudich JL
    Photochem Photobiol; 1992 Dec; 56(6):1119-28. PubMed ID: 1492128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural changes of pharaonis phoborhodopsin upon photoisomerization of the retinal chromophore: infrared spectral comparison with bacteriorhodopsin.
    Kandori H; Shimono K; Sudo Y; Iwamoto M; Shichida Y; Kamo N
    Biochemistry; 2001 Aug; 40(31):9238-46. PubMed ID: 11478891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Color regulation in the archaebacterial phototaxis receptor phoborhodopsin (sensory rhodopsin II).
    Takahashi T; Yan B; Mazur P; Derguini F; Nakanishi K; Spudich JL
    Biochemistry; 1990 Sep; 29(36):8467-74. PubMed ID: 2252905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure and mechanism of the family of retinal proteins from halophilic archaea.
    Oesterhelt D
    Curr Opin Struct Biol; 1998 Aug; 8(4):489-500. PubMed ID: 9729742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation.
    Ihara K; Umemura T; Katagiri I; Kitajima-Ihara T; Sugiyama Y; Kimura Y; Mukohata Y
    J Mol Biol; 1999 Jan; 285(1):163-74. PubMed ID: 9878396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensory rhodopsin I photocycle intermediate SRI380 contains 13-cis retinal bound via an unprotonated Schiff base.
    Haupts U; Eisfeld W; Stockburger M; Oesterhelt D
    FEBS Lett; 1994 Dec; 356(1):25-9. PubMed ID: 7988713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FTIR analysis of the SII540 intermediate of sensory rhodopsin II: Asp73 is the Schiff base proton acceptor.
    Bergo V; Spudich EN; Scott KL; Spudich JL; Rothschild KJ
    Biochemistry; 2000 Mar; 39(11):2823-30. PubMed ID: 10715101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pharaonis phoborhodopsin mutant with the same retinal binding site residues as in bacteriorhodopsin.
    Shimono K; Furutani Y; Kandori H; Kamo N
    Biochemistry; 2002 May; 41(20):6504-9. PubMed ID: 12009914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromophore configuration of pharaonis phoborhodopsin and its isomerization on photon absorption.
    Imamoto Y; Shichida Y; Hirayama J; Tomioka H; Kamo N; Yoshizawa T
    Biochemistry; 1992 Mar; 31(9):2523-8. PubMed ID: 1547236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective reaction of hydroxylamine with chromophore during the photocycle of pharaonis phoborhodopsin.
    Iwamoto M; Sudo Y; Shimono K; Kamo N
    Biochim Biophys Acta; 2001 Sep; 1514(1):152-8. PubMed ID: 11513812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enthalpy--entropy compensation in a photocycle: the K-to-L transition in sensory rhodopsin II from Natronobacterium pharaonis.
    Losi A; Wegener AA; Engelhard M; Braslavsky SE
    J Am Chem Soc; 2001 Feb; 123(8):1766-7. PubMed ID: 11456781
    [No Abstract]   [Full Text] [Related]  

  • 17. Photocycle of phoborhodopsin from haloalkaliphilic bacterium (Natronobacterium pharaonis) studied by low-temperature spectrophotometry.
    Hirayama J; Imamoto Y; Shichida Y; Kamo N; Tomioka H; Yoshizawa T
    Biochemistry; 1992 Feb; 31(7):2093-8. PubMed ID: 1536851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The M intermediate of Pharaonis phoborhodopsin is photoactive.
    Balashov SP; Sumi M; Kamo N
    Biophys J; 2000 Jun; 78(6):3150-9. PubMed ID: 10827991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Positioning proton-donating residues to the Schiff-base accelerates the M-decay of pharaonis phoborhodopsin expressed in Escherichia coli.
    Iwamoto M; Shimono K; Sumi M; Kamo N
    Biophys Chem; 1999 Jun; 79(3):187-92. PubMed ID: 10443011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensory rhodopsins I and II modulate a methylation/demethylation system in Halobacterium halobium phototaxis.
    Spudich EN; Takahashi T; Spudich JL
    Proc Natl Acad Sci U S A; 1989 Oct; 86(20):7746-50. PubMed ID: 2682623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.