These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
589 related articles for article (PubMed ID: 9872322)
21. Crystal structure of MalK, the ATPase subunit of the trehalose/maltose ABC transporter of the archaeon Thermococcus litoralis. Diederichs K; Diez J; Greller G; Müller C; Breed J; Schnell C; Vonrhein C; Boos W; Welte W EMBO J; 2000 Nov; 19(22):5951-61. PubMed ID: 11080142 [TBL] [Abstract][Full Text] [Related]
22. Adventures with ABC-proteins: highly conserved ATP-dependent transporters. Holland KA; Holland IB Acta Microbiol Immunol Hung; 2005; 52(3-4):309-22. PubMed ID: 16400872 [TBL] [Abstract][Full Text] [Related]
23. Nucleotide-dependent conformational changes in HisP: molecular dynamics simulations of an ABC transporter nucleotide-binding domain. Campbell JD; Deol SS; Ashcroft FM; Kerr ID; Sansom MS Biophys J; 2004 Dec; 87(6):3703-15. PubMed ID: 15377525 [TBL] [Abstract][Full Text] [Related]
24. Electrodiffusional ATP movement through CFTR and other ABC transporters. Cantiello HF Pflugers Arch; 2001; 443 Suppl 1():S22-7. PubMed ID: 11845298 [TBL] [Abstract][Full Text] [Related]
25. Cysteine-scanning mutagenesis provides no evidence for the extracellular accessibility of the nucleotide-binding domains of the multidrug resistance transporter P-glycoprotein. Blott EJ; Higgins CF; Linton KJ EMBO J; 1999 Dec; 18(23):6800-8. PubMed ID: 10581253 [TBL] [Abstract][Full Text] [Related]
26. MsbA ATP-binding cassette (ABC) transporter of E. coli: structure and possible flippase mechanism. Kaul G; Pattan G Indian J Biochem Biophys; 2011 Feb; 48(1):7-13. PubMed ID: 21469596 [TBL] [Abstract][Full Text] [Related]
27. Membrane-integration characteristics of two ABC transporters, CFTR and P-glycoprotein. Enquist K; Fransson M; Boekel C; Bengtsson I; Geiger K; Lang L; Pettersson A; Johansson S; von Heijne G; Nilsson I J Mol Biol; 2009 Apr; 387(5):1153-64. PubMed ID: 19236881 [TBL] [Abstract][Full Text] [Related]
28. Characterization of the adenosine triphosphatase activity of the periplasmic histidine permease, a traffic ATPase (ABC transporter). Liu CE; Liu PQ; Ames GF J Biol Chem; 1997 Aug; 272(35):21883-91. PubMed ID: 9268321 [TBL] [Abstract][Full Text] [Related]
29. Flexibility in the ABC transporter MsbA: Alternating access with a twist. Ward A; Reyes CL; Yu J; Roth CB; Chang G Proc Natl Acad Sci U S A; 2007 Nov; 104(48):19005-10. PubMed ID: 18024585 [TBL] [Abstract][Full Text] [Related]
30. Learning from each other: ABC transporter regulation by protein phosphorylation in plant and mammalian systems. Aryal B; Laurent C; Geisler M Biochem Soc Trans; 2015 Oct; 43(5):966-74. PubMed ID: 26517911 [TBL] [Abstract][Full Text] [Related]
31. Sequence requirements of the ATP-binding site within the C-terminal nucleotide-binding domain of mouse P-glycoprotein: structure-activity relationships for flavonoid binding. de Wet H; McIntosh DB; Conseil G; Baubichon-Cortay H; Krell T; Jault JM; Daskiewicz JB; Barron D; Di Pietro A Biochemistry; 2001 Aug; 40(34):10382-91. PubMed ID: 11513617 [TBL] [Abstract][Full Text] [Related]
32. Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation. Hohl M; Briand C; Grütter MG; Seeger MA Nat Struct Mol Biol; 2012 Mar; 19(4):395-402. PubMed ID: 22447242 [TBL] [Abstract][Full Text] [Related]
33. The crystal structure of the MJ0796 ATP-binding cassette. Implications for the structural consequences of ATP hydrolysis in the active site of an ABC transporter. Yuan YR; Blecker S; Martsinkevich O; Millen L; Thomas PJ; Hunt JF J Biol Chem; 2001 Aug; 276(34):32313-21. PubMed ID: 11402022 [TBL] [Abstract][Full Text] [Related]
34. The high-affinity E. coli methionine ABC transporter: structure and allosteric regulation. Kadaba NS; Kaiser JT; Johnson E; Lee A; Rees DC Science; 2008 Jul; 321(5886):250-3. PubMed ID: 18621668 [TBL] [Abstract][Full Text] [Related]
35. Structure-function analysis of the histidine permease and comparison with cystic fibrosis mutations. Shyamala V; Baichwal V; Beall E; Ames GF J Biol Chem; 1991 Oct; 266(28):18714-9. PubMed ID: 1717452 [TBL] [Abstract][Full Text] [Related]
37. Cystic fibrosis transmembrane conductance regulator: the first nucleotide binding fold targets the membrane with retention of its ATP binding function. Ko YH; Delannoy M; Pedersen PL Biochemistry; 1997 Apr; 36(16):5053-64. PubMed ID: 9125527 [TBL] [Abstract][Full Text] [Related]
38. Modeling of nucleotide binding domains of ABC transporter proteins based on a F1-ATPase/recA topology: structural model of the nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator (CFTR). Bianchet MA; Ko YH; Amzel LM; Pedersen PL J Bioenerg Biomembr; 1997 Oct; 29(5):503-24. PubMed ID: 9511935 [TBL] [Abstract][Full Text] [Related]
39. Purification, crystallization and preliminary X-ray diffraction studies of the ATP-binding subunit of an ABC transporter from Geobacillus kaustophilus. Manjula M; Pampa KJ; Madan Kumar S; Kunishima N; Lokanath NK Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Nov; 68(Pt 11):1406-8. PubMed ID: 23143260 [TBL] [Abstract][Full Text] [Related]
40. Purification and characterization of the N-terminal nucleotide binding domain of an ABC drug transporter of Candida albicans: uncommon cysteine 193 of Walker A is critical for ATP hydrolysis. Jha S; Karnani N; Dhar SK; Mukhopadhayay K; Shukla S; Saini P; Mukhopadhayay G; Prasad R Biochemistry; 2003 Sep; 42(36):10822-32. PubMed ID: 12962507 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]