These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 9872770)
21. Phenotype fingerprinting suggests the involvement of single-genotype consortia in degradation of aromatic compounds by Rhodopseudomonas palustris. Karpinets TV; Pelletier DA; Pan C; Uberbacher EC; Melnichenko GV; Hettich RL; Samatova NF PLoS One; 2009; 4(2):e4615. PubMed ID: 19242537 [TBL] [Abstract][Full Text] [Related]
22. Cloning and expression of the transposable chlorobenzoate-3,4-dioxygenase genes of Alcaligenes sp. strain BR60. Nakatsu CH; Wyndham RC Appl Environ Microbiol; 1993 Nov; 59(11):3625-33. PubMed ID: 8285670 [TBL] [Abstract][Full Text] [Related]
23. Rhodopseudomonas palustris CGA009 has two functional ppsR genes, each of which encodes a repressor of photosynthesis gene expression. Braatsch S; Bernstein JR; Lessner F; Morgan J; Liao JC; Harwood CS; Beatty JT Biochemistry; 2006 Dec; 45(48):14441-51. PubMed ID: 17128983 [TBL] [Abstract][Full Text] [Related]
24. Development of a PCR method for the detection and quantification of benzoyl-CoA reductase genes and its application to monitored natural attenuation. Hosoda A; Kasai Y; Hamamura N; Takahata Y; Watanabe K Biodegradation; 2005 Dec; 16(6):591-601. PubMed ID: 15865350 [TBL] [Abstract][Full Text] [Related]
25. Analysis of diversity among 3-chlorobenzoate-degrading strains of Rhodopseudomonas palustris. Oda Y; Meijer WG; Gibson JL; Gottschal JC; Forney LJ Microb Ecol; 2004 Jan; 47(1):68-79. PubMed ID: 15259271 [TBL] [Abstract][Full Text] [Related]
26. Evidence for 4-chlorobenzoic acid dehalogenation mediated by plasmids related to pSS50. Layton AC; Sanseverino J; Wallace W; Corcoran C; Sayler GS Appl Environ Microbiol; 1992 Jan; 58(1):399-402. PubMed ID: 1539985 [TBL] [Abstract][Full Text] [Related]
27. 4-Hydroxybenzoate-coenzyme A ligase from Rhodopseudomonas palustris: purification, gene sequence, and role in anaerobic degradation. Gibson J; Dispensa M; Fogg GC; Evans DT; Harwood CS J Bacteriol; 1994 Feb; 176(3):634-41. PubMed ID: 8300518 [TBL] [Abstract][Full Text] [Related]
28. Cloning of genes participating in aerobic biodegradation of p-cumate from Rhodopseudomonas palustris. Puskás LG; Inui M; Kele Z; Yukawa H DNA Seq; 2000; 11(1-2):9-20. PubMed ID: 10902905 [TBL] [Abstract][Full Text] [Related]
29. Involvement of a chlorobenzoate-catabolic transposon, Tn5271, in community adaptation to chlorobiphenyl, chloroaniline, and 2,4-dichlorophenoxyacetic acid in a freshwater ecosystem. Fulthorpe RR; Wyndham RC Appl Environ Microbiol; 1992 Jan; 58(1):314-25. PubMed ID: 1311543 [TBL] [Abstract][Full Text] [Related]
30. A Disjointed Pathway for Malonate Degradation by Rhodopseudomonas palustris. Wang Z; Wen Q; Harwood CS; Liang B; Yang J Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220835 [TBL] [Abstract][Full Text] [Related]
31. Two Distinct Aerobic Methionine Salvage Pathways Generate Volatile Methanethiol in Rhodopseudomonas palustris. Miller AR; North JA; Wildenthal JA; Tabita FR mBio; 2018 Apr; 9(2):. PubMed ID: 29636438 [TBL] [Abstract][Full Text] [Related]
32. Photoheterotrophic metabolism of acrylamide by a newly isolated strain of Rhodopseudomonas palustris. Wampler DA; Ensign SA Appl Environ Microbiol; 2005 Oct; 71(10):5850-7. PubMed ID: 16204496 [TBL] [Abstract][Full Text] [Related]
33. Evolution of Haq IU; Christensen A; Fixen KR Appl Environ Microbiol; 2024 Feb; 90(2):e0210423. PubMed ID: 38206012 [TBL] [Abstract][Full Text] [Related]
35. Biodecolorization and partial mineralization of Reactive Black 5 by a strain of Rhodopseudomonas palustris. Wang X; Cheng X; Sun D; Qi H J Environ Sci (China); 2008; 20(10):1218-25. PubMed ID: 19143346 [TBL] [Abstract][Full Text] [Related]
36. H2 production in Rhodopseudomonas palustris as a way to cope with high light intensities. Muzziotti D; Adessi A; Faraloni C; Torzillo G; De Philippis R Res Microbiol; 2016 Jun; 167(5):350-6. PubMed ID: 26916624 [TBL] [Abstract][Full Text] [Related]
37. Kinetic modeling of anaerobic degradation of plant-derived aromatic mixtures by Rhodopseudomonas palustris. Ma Y; Donohue TJ; Noguera DR Biodegradation; 2021 Apr; 32(2):179-192. PubMed ID: 33675449 [TBL] [Abstract][Full Text] [Related]
38. Anaerobic degradation of halogenated benzoic acids coupled to denitrification observed in a variety of sediment and soil samples. Häggblom MM; Rivera MD; Young LY FEMS Microbiol Lett; 1996 Nov; 144(2-3):213-9. PubMed ID: 9011523 [TBL] [Abstract][Full Text] [Related]
39. The genome-scale metabolic model for the purple non-sulfur bacterium Rhodopseudomonas palustris Bis A53 accurately predicts phenotypes under chemoheterotrophic, chemoautotrophic, photoheterotrophic, and photoautotrophic growth conditions. Tec-Campos D; Posadas C; Tibocha-Bonilla JD; Thiruppathy D; Glonek N; Zuñiga C; Zepeda A; Zengler K PLoS Comput Biol; 2023 Aug; 19(8):e1011371. PubMed ID: 37556472 [TBL] [Abstract][Full Text] [Related]
40. System-level analysis of metabolic trade-offs during anaerobic photoheterotrophic growth in Rhodopseudomonas palustris. Navid A; Jiao Y; Wong SE; Pett-Ridge J BMC Bioinformatics; 2019 May; 20(1):233. PubMed ID: 31072303 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]