These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 9873530)

  • 1. A combinatorial approach to chemical modification of subtilisin Bacillus lentus.
    Plettner E; Khumtaveeporn K; Shang X; Jones JB
    Bioorg Med Chem Lett; 1998 Sep; 8(17):2291-6. PubMed ID: 9873530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-directed mutagenesis combined with chemical modification as a strategy for altering the specificity of the S1 and S1' pockets of subtilisin Bacillus lentus.
    DeSantis G; Berglund P; Stabile MR; Gold M; Jones JB
    Biochemistry; 1998 Apr; 37(17):5968-73. PubMed ID: 9558332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A highly active and oxidation-resistant subtilisin-like enzyme produced by a combination of site-directed mutagenesis and chemical modification.
    Grøn H; Bech LM; Branner S; Breddam K
    Eur J Biochem; 1990 Dec; 194(3):897-901. PubMed ID: 2269308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the altered specificity and catalytic properties of mutant subtilisin chemically modified at position S156C and S166C in the S1 pocket.
    DeSantis G; Jones JB
    Bioorg Med Chem; 1999 Jul; 7(7):1381-7. PubMed ID: 10465412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Covalent modification of subtilisin Bacillus lentus cysteine mutants with enantiomerically pure chiral auxiliaries causes remarkable changes in activity.
    Dickman M; Jones JB
    Bioorg Med Chem; 2000 Aug; 8(8):1957-68. PubMed ID: 11003141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled site-selective protein glycosylation for precise glycan structure-catalytic activity relationships.
    Davis BG; Lloyd RC; Jones JB
    Bioorg Med Chem; 2000 Jul; 8(7):1527-35. PubMed ID: 10976501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural changes leading to increased enzymatic activity in an engineered variant of Bacillus lentus subtilisin.
    Bott R; Dauberman J; Wilson L; Ganshaw G; Sagar H; Graycar T; Estell D
    Adv Exp Med Biol; 1996; 379():277-83. PubMed ID: 8796332
    [No Abstract]   [Full Text] [Related]  

  • 8. Toward tailoring the specificity of the S1 pocket of subtilisin B. lentus: chemical modification of mutant enzymes as a strategy for removing specificity limitations.
    DeSantis G; Shang X; Jones JB
    Biochemistry; 1999 Oct; 38(40):13391-7. PubMed ID: 10529215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The controlled introduction of multiple negative charge at single amino acid sites in subtilisin Bacillus lentus.
    Davis BG; Shang X; DeSantis G; Bott RR; Jones JB
    Bioorg Med Chem; 1999 Nov; 7(11):2293-301. PubMed ID: 10632039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies of binding sites in the subtilisin from Bacillus lentus by means of site directed mutagenesis and kinetic investigations.
    Grøn H; Bech LM; Sørensen SB; Meldal M; Breddam K
    Adv Exp Med Biol; 1996; 379():105-12. PubMed ID: 8796314
    [No Abstract]   [Full Text] [Related]  

  • 11. Benzophenone boronic acid photoaffinity labeling of subtilisin CMMs to probe altered specificity.
    DeSantis G; Paech C; Jones JB
    Bioorg Med Chem; 2000 Mar; 8(3):563-70. PubMed ID: 10732973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significance of hydrophobic S4-P4 interactions in subtilisin 309 from Bacillus lentus.
    Bech LM; Sørensen SB; Breddam K
    Biochemistry; 1993 Mar; 32(11):2845-52. PubMed ID: 8457550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altering the specificity of subtilisin Bacillus lentus through the introduction of positive charge at single amino acid sites.
    Davis BG; Khumtaveeporn K; Bott RR; Jones JB
    Bioorg Med Chem; 1999 Nov; 7(11):2303-11. PubMed ID: 10632040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemically modified "polar patch" mutants of subtilisin in peptide synthesis with remarkably broad substrate acceptance: designing combinatorial biocatalysts.
    Matsumoto K; Davis BG; Jones JB
    Chemistry; 2002 Sep; 8(18):4129-37. PubMed ID: 12298003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic activity and conformation of chemically modified subtilisin Carlsberg in organic media.
    Kwon OH; Imanishi Y; Ito Y
    Biotechnol Bioeng; 1999; 66(4):265-70. PubMed ID: 10578097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of amino acid deletion in subtilisin E, based on structural comparison with a microbial alkaline elastase, on its substrate specificity and catalysis.
    Takagi H; Arafuka S; Inouye M; Yamasaki M
    J Biochem; 1992 May; 111(5):584-8. PubMed ID: 1639753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the activity of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation.
    Weng M; Deng X; Bao W; Zhu L; Wu J; Cai Y; Jia Y; Zheng Z; Zou G
    Biochem Biophys Res Commun; 2015 Sep; 465(3):580-6. PubMed ID: 26291268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altering the proteolytic activity of subtilisin through protein engineering.
    Graycar TP; Bott RR; Caldwell RM; Dauberman JL; Lad PJ; Power SD; Sagar IH; Silva RA; Weiss GL; Woodhouse LR
    Ann N Y Acad Sci; 1992 Nov; 672():71-9. PubMed ID: 1476392
    [No Abstract]   [Full Text] [Related]  

  • 19. Engineering a novel specificity in subtilisin BPN'.
    Rheinnecker M; Baker G; Eder J; Fersht AR
    Biochemistry; 1993 Feb; 32(5):1199-203. PubMed ID: 8448130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced thermostability of the single-Cys mutant subtilisin E under oxidizing conditions.
    Takagi H; Hirai K; Wada M; Nakamori S
    J Biochem; 2000 Oct; 128(4):585-9. PubMed ID: 11011140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.