These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 9874787)

  • 1. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins.
    Xu Y; Piston DW; Johnson CH
    Proc Natl Acad Sci U S A; 1999 Jan; 96(1):151-6. PubMed ID: 9874787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian rhythms of cyanobacteria: monitoring the biological clocks of individual colonies by bioluminescence.
    Kondo T; Ishiura M
    J Bacteriol; 1994 Apr; 176(7):1881-5. PubMed ID: 8144454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioluminescence resonance energy transfer-based imaging of protein-protein interactions in living cells.
    Kobayashi H; Picard LP; Schönegge AM; Bouvier M
    Nat Protoc; 2019 Apr; 14(4):1084-1107. PubMed ID: 30911173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining protein complementation assays with resonance energy transfer to detect multipartner protein complexes in living cells.
    Rebois RV; Robitaille M; Pétrin D; Zylbergold P; Trieu P; Hébert TE
    Methods; 2008 Jul; 45(3):214-8. PubMed ID: 18586102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating protein-protein interactions in live cells using bioluminescence resonance energy transfer.
    Deriziotis P; Graham SA; Estruch SB; Fisher SE
    J Vis Exp; 2014 May; (87):. PubMed ID: 24893771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring Ligand-Activated Protein-Protein Interactions Using Bioluminescent Resonance Energy Transfer (BRET) Assay.
    Coriano C; Powell E; Xu W
    Methods Mol Biol; 2016; 1473():3-15. PubMed ID: 27518618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Firefly Luciferase-Based Sequential Bioluminescence Resonance Energy Transfer (BRET)-Fluorescence Resonance Energy Transfer (FRET) Protease Assays.
    Branchini B
    Methods Mol Biol; 2016; 1461():101-15. PubMed ID: 27424898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BRET: NanoLuc-Based Bioluminescence Resonance Energy Transfer Platform to Monitor Protein-Protein Interactions in Live Cells.
    Mo XL; Fu H
    Methods Mol Biol; 2016; 1439():263-71. PubMed ID: 27317001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioluminescence resonance energy transfer system for measuring dynamic protein-protein interactions in bacteria.
    Cui B; Wang Y; Song Y; Wang T; Li C; Wei Y; Luo ZQ; Shen X
    mBio; 2014 May; 5(3):e01050-14. PubMed ID: 24846380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The evolution of the cyanobacterial posttranslational clock from a primitive "phoscillator".
    Simons MJ
    J Biol Rhythms; 2009 Jun; 24(3):175-82. PubMed ID: 19465694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of KaiC phosphorylation in the circadian clock system of Synechococcus elongatus PCC 7942.
    Nishiwaki T; Satomi Y; Nakajima M; Lee C; Kiyohara R; Kageyama H; Kitayama Y; Temamoto M; Yamaguchi A; Hijikata A; Go M; Iwasaki H; Takao T; Kondo T
    Proc Natl Acad Sci U S A; 2004 Sep; 101(38):13927-32. PubMed ID: 15347812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET).
    Angers S; Salahpour A; Joly E; Hilairet S; Chelsky D; Dennis M; Bouvier M
    Proc Natl Acad Sci U S A; 2000 Mar; 97(7):3684-9. PubMed ID: 10725388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced brightness of bacterial luciferase by bioluminescence resonance energy transfer.
    Kaku T; Sugiura K; Entani T; Osabe K; Nagai T
    Sci Rep; 2021 Jul; 11(1):14994. PubMed ID: 34294849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circadian programs in cyanobacteria: adaptiveness and mechanism.
    Johnson CH; Golden SS
    Annu Rev Microbiol; 1999; 53():389-409. PubMed ID: 10547696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide binding and autophosphorylation of the clock protein KaiC as a circadian timing process of cyanobacteria.
    Nishiwaki T; Iwasaki H; Ishiura M; Kondo T
    Proc Natl Acad Sci U S A; 2000 Jan; 97(1):495-9. PubMed ID: 10618446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of BRET to Study Protein-Protein Interactions In Vitro and In Vivo.
    Dimri S; Basu S; De A
    Methods Mol Biol; 2016; 1443():57-78. PubMed ID: 27246334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Independent photoreceptive circadian clocks throughout Drosophila.
    Plautz JD; Kaneko M; Hall JC; Kay SA
    Science; 1997 Nov; 278(5343):1632-5. PubMed ID: 9374465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying the rhythm of KaiB-C interaction for in vitro cyanobacterial circadian clock.
    Ma L; Ranganathan R
    PLoS One; 2012; 7(8):e42581. PubMed ID: 22900029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constitutive and agonist-dependent homo-oligomerization of the thyrotropin-releasing hormone receptor. Detection in living cells using bioluminescence resonance energy transfer.
    Kroeger KM; Hanyaloglu AC; Seeber RM; Miles LE; Eidne KA
    J Biol Chem; 2001 Apr; 276(16):12736-43. PubMed ID: 11278883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioluminescence Resonance Energy Transfer as a Method to Study Protein-Protein Interactions: Application to G Protein Coupled Receptor Biology.
    El Khamlichi C; Reverchon-Assadi F; Hervouet-Coste N; Blot L; Reiter E; Morisset-Lopez S
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30717191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.