These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 9875293)
41. Facilitators and Repressors of Transcription-coupled DNA Repair in Saccharomyces cerevisiae. Li W; Li S Photochem Photobiol; 2017 Jan; 93(1):259-267. PubMed ID: 27796045 [TBL] [Abstract][Full Text] [Related]
42. The molecular mechanism of mitotic inhibition of TFIIH is mediated by phosphorylation of CDK7. Akoulitchev S; Reinberg D Genes Dev; 1998 Nov; 12(22):3541-50. PubMed ID: 9832506 [TBL] [Abstract][Full Text] [Related]
43. Mutations in the RING domain of TFB3, a subunit of yeast transcription factor IIH, reveal a role in cell cycle progression. Jona G; Livi LL; Gileadi O J Biol Chem; 2002 Oct; 277(42):39409-16. PubMed ID: 12176978 [TBL] [Abstract][Full Text] [Related]
44. Ku70/Ku80 protein complex inhibits the binding of nucleotide excision repair proteins on linear DNA in vitro. Frit P; Calsou P; Chen DJ; Salles B J Mol Biol; 1998 Dec; 284(4):963-73. PubMed ID: 9837719 [TBL] [Abstract][Full Text] [Related]
45. The multiple roles of transcription/repair factor TFIIH. Svejstrup JQ; Vichi P; Egly JM Trends Biochem Sci; 1996 Sep; 21(9):346-50. PubMed ID: 8870499 [TBL] [Abstract][Full Text] [Related]
46. Tfb5 is partially dispensable for Rad26 mediated transcription coupled nucleotide excision repair in yeast. Ding B; Ruggiero C; Chen X; Li S DNA Repair (Amst); 2007 Nov; 6(11):1661-9. PubMed ID: 17644494 [TBL] [Abstract][Full Text] [Related]
47. Kin28, the TFIIH-associated carboxy-terminal domain kinase, facilitates the recruitment of mRNA processing machinery to RNA polymerase II. Rodriguez CR; Cho EJ; Keogh MC; Moore CL; Greenleaf AL; Buratowski S Mol Cell Biol; 2000 Jan; 20(1):104-12. PubMed ID: 10594013 [TBL] [Abstract][Full Text] [Related]
48. Transcription factor TFIIH is required for promoter melting in vivo. Guzmán E; Lis JT Mol Cell Biol; 1999 Aug; 19(8):5652-8. PubMed ID: 10409754 [TBL] [Abstract][Full Text] [Related]
49. Rad25p, a DNA helicase subunit of yeast transcription factor TFIIH, is required for promoter escape in vivo. Ostapenko D; Gileadi O Gene; 2000 Mar; 245(1):109-17. PubMed ID: 10713451 [TBL] [Abstract][Full Text] [Related]
50. Posttranslational inhibition of Ty1 retrotransposition by nucleotide excision repair/transcription factor TFIIH subunits Ssl2p and Rad3p. Lee BS; Lichtenstein CP; Faiola B; Rinckel LA; Wysock W; Curcio MJ; Garfinkel DJ Genetics; 1998 Apr; 148(4):1743-61. PubMed ID: 9560391 [TBL] [Abstract][Full Text] [Related]
51. UV-induced de novo protein synthesis enhances nucleotide excision repair efficiency in a transcription-dependent manner in S. cerevisiae. Al-Moghrabi NM; Al-Sharif IS; Aboussekhra A DNA Repair (Amst); 2003 Nov; 2(11):1185-97. PubMed ID: 14599741 [TBL] [Abstract][Full Text] [Related]
52. Double mutants of Saccharomyces cerevisiae with alterations in global genome and transcription-coupled repair. Verhage RA; van Gool AJ; de Groot N; Hoeijmakers JH; van de Putte P; Brouwer J Mol Cell Biol; 1996 Feb; 16(2):496-502. PubMed ID: 8552076 [TBL] [Abstract][Full Text] [Related]
53. Activator-specific requirement for the general transcription factor IIE in yeast. Sakurai H; Fukasawa T Biochem Biophys Res Commun; 1999 Aug; 261(3):734-9. PubMed ID: 10441494 [TBL] [Abstract][Full Text] [Related]
54. RAD26, the yeast homolog of human Cockayne's syndrome group B gene, encodes a DNA-dependent ATPase. Guzder SN; Habraken Y; Sung P; Prakash L; Prakash S J Biol Chem; 1996 Aug; 271(31):18314-7. PubMed ID: 8702468 [TBL] [Abstract][Full Text] [Related]
55. Excision repair at the level of the nucleotide in the Saccharomyces cerevisiae MFA2 gene: mapping of where enhanced repair in the transcribed strand begins or ends and identification of only a partial rad16 requisite for repairing upstream control sequences. Teng Y; Li S; Waters R; Reed SH J Mol Biol; 1997 Mar; 267(2):324-37. PubMed ID: 9096229 [TBL] [Abstract][Full Text] [Related]
56. Modulation of TFIIH-associated kinase activity by complex formation and its relationship with CTD phosphorylation of RNA polymerase II. Watanabe Y; Fujimoto H; Watanabe T; Maekawa T; Masutani C; Hanaoka F; Ohkuma Y Genes Cells; 2000 May; 5(5):407-23. PubMed ID: 10886368 [TBL] [Abstract][Full Text] [Related]
57. A mammalian SRB protein associated with an RNA polymerase II holoenzyme. Chao DM; Gadbois EL; Murray PJ; Anderson SF; Sonu MS; Parvin JD; Young RA Nature; 1996 Mar; 380(6569):82-5. PubMed ID: 8598913 [TBL] [Abstract][Full Text] [Related]
58. From androgen receptor to the general transcription factor TFIIH. Identification of cdk activating kinase (CAK) as an androgen receptor NH(2)-terminal associated coactivator. Lee DK; Duan HO; Chang C J Biol Chem; 2000 Mar; 275(13):9308-13. PubMed ID: 10734072 [TBL] [Abstract][Full Text] [Related]
59. Ccl1, a cyclin associated with protein kinase Kin28, controls the phosphorylation of RNA polymerase II largest subunit and mRNA transcription. Valay JG; Dubois MF; Bensaude O; Faye G C R Acad Sci III; 1996 Mar; 319(3):183-9. PubMed ID: 8761664 [TBL] [Abstract][Full Text] [Related]
60. Association of Cdk-activating kinase subunits with transcription factor TFIIH. Serizawa H; Mäkelä TP; Conaway JW; Conaway RC; Weinberg RA; Young RA Nature; 1995 Mar; 374(6519):280-2. PubMed ID: 7885450 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]