These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 9875293)
61. RNA polymerase II transcription suppresses nucleosomal modulation of UV-induced (6-4) photoproduct and cyclobutane pyrimidine dimer repair in yeast. Tijsterman M; de Pril R; Tasseron-de Jong JG; Brouwer J Mol Cell Biol; 1999 Jan; 19(1):934-40. PubMed ID: 9858617 [TBL] [Abstract][Full Text] [Related]
62. Ten years of TFIIH. Coin F; Egly JM Cold Spring Harb Symp Quant Biol; 1998; 63():105-10. PubMed ID: 10384274 [No Abstract] [Full Text] [Related]
63. Rad26, the yeast homolog of the cockayne syndrome B gene product, counteracts inhibition of DNA repair due to RNA polymerase II transcription. Tijsterman M; Brouwer J J Biol Chem; 1999 Jan; 274(3):1199-202. PubMed ID: 9880486 [TBL] [Abstract][Full Text] [Related]
64. A complex of the Srb8, -9, -10, and -11 transcriptional regulatory proteins from yeast. Borggrefe T; Davis R; Erdjument-Bromage H; Tempst P; Kornberg RD J Biol Chem; 2002 Nov; 277(46):44202-7. PubMed ID: 12200444 [TBL] [Abstract][Full Text] [Related]
65. A compromised yeast RNA polymerase II enhances UV sensitivity in the absence of global genome nucleotide excision repair. Wong JM; Ingles CJ Mol Gen Genet; 2001 Feb; 264(6):842-51. PubMed ID: 11254132 [TBL] [Abstract][Full Text] [Related]
66. A role for the TFIIH XPB DNA helicase in promoter escape by RNA polymerase II. Moreland RJ; Tirode F; Yan Q; Conaway JW; Egly JM; Conaway RC J Biol Chem; 1999 Aug; 274(32):22127-30. PubMed ID: 10428772 [TBL] [Abstract][Full Text] [Related]
67. p44 and p34 subunits of the BTF2/TFIIH transcription factor have homologies with SSL1, a yeast protein involved in DNA repair. Humbert S; van Vuuren H; Lutz Y; Hoeijmakers JH; Egly JM; Moncollin V EMBO J; 1994 May; 13(10):2393-8. PubMed ID: 8194529 [TBL] [Abstract][Full Text] [Related]
68. Transcription bypass of DNA lesions enhances cell survival but attenuates transcription coupled DNA repair. Li W; Selvam K; Ko T; Li S Nucleic Acids Res; 2014 Dec; 42(21):13242-53. PubMed ID: 25389266 [TBL] [Abstract][Full Text] [Related]
69. The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Roy R; Adamczewski JP; Seroz T; Vermeulen W; Tassan JP; Schaeffer L; Nigg EA; Hoeijmakers JH; Egly JM Cell; 1994 Dec; 79(6):1093-101. PubMed ID: 8001135 [TBL] [Abstract][Full Text] [Related]
70. RNA polymerase II transcription inhibits DNA repair by photolyase in the transcribed strand of active yeast genes. Livingstone-Zatchej M; Meier A; Suter B; Thoma F Nucleic Acids Res; 1997 Oct; 25(19):3795-800. PubMed ID: 9380500 [TBL] [Abstract][Full Text] [Related]
71. Repair of rDNA in Saccharomyces cerevisiae: RAD4-independent strand-specific nucleotide excision repair of RNA polymerase I transcribed genes. Verhage RA; Van de Putte P; Brouwer J Nucleic Acids Res; 1996 Mar; 24(6):1020-5. PubMed ID: 8604332 [TBL] [Abstract][Full Text] [Related]
72. Strand-specific PCR of UV radiation-damaged genomic DNA revealed an essential role of DNA-PKcs in the transcription-coupled repair. An J; Yang T; Huang Y; Liu F; Sun J; Wang Y; Xu Q; Wu D; Zhou P BMC Biochem; 2011 Jan; 12():2. PubMed ID: 21214942 [TBL] [Abstract][Full Text] [Related]
73. TFIIH phosphorylation of the Pol II CTD stimulates mediator dissociation from the preinitiation complex and promoter escape. Wong KH; Jin Y; Struhl K Mol Cell; 2014 May; 54(4):601-12. PubMed ID: 24746699 [TBL] [Abstract][Full Text] [Related]
74. Transcription-coupled and global genome repair in the Saccharomyces cerevisiae RPB2 gene at nucleotide resolution. Tijsterman M; Tasseron-de Jong JG; van de Putte P; Brouwer J Nucleic Acids Res; 1996 Sep; 24(18):3499-506. PubMed ID: 8836174 [TBL] [Abstract][Full Text] [Related]
75. KIN28 encodes a C-terminal domain kinase that controls mRNA transcription in Saccharomyces cerevisiae but lacks cyclin-dependent kinase-activating kinase (CAK) activity. Cismowski MJ; Laff GM; Solomon MJ; Reed SI Mol Cell Biol; 1995 Jun; 15(6):2983-92. PubMed ID: 7760796 [TBL] [Abstract][Full Text] [Related]
76. Defective transcription/repair factor IIH recruitment to specific UV lesions in trichothiodystrophy syndrome. Chiganças V; Lima-Bessa KM; Stary A; Menck CF; Sarasin A Cancer Res; 2008 Aug; 68(15):6074-83. PubMed ID: 18676829 [TBL] [Abstract][Full Text] [Related]
77. Nucleotide excision repair/TFIIH helicases RAD3 and SSL2 inhibit short-sequence recombination and Ty1 retrotransposition by similar mechanisms. Lee BS; Bi L; Garfinkel DJ; Bailis AM Mol Cell Biol; 2000 Apr; 20(7):2436-45. PubMed ID: 10713167 [TBL] [Abstract][Full Text] [Related]
78. Transcription elongation factor S-II is not required for transcription-coupled repair in yeast. Verhage RA; Heyn J; van de Putte P; Brouwer J Mol Gen Genet; 1997 Apr; 254(3):284-90. PubMed ID: 9150262 [TBL] [Abstract][Full Text] [Related]
79. Photoreactivation of UV-induced cyclobutane pyrimidine dimers in the MFA2 gene of Saccharomyces cerevisiae. Morse NR; Meniel V; Waters R Nucleic Acids Res; 2002 Apr; 30(8):1799-807. PubMed ID: 11937634 [TBL] [Abstract][Full Text] [Related]
80. RAD9, RAD24, RAD16 and RAD26 are required for the inducible nucleotide excision repair of UV-induced cyclobutane pyrimidine dimers from the transcribed and non-transcribed regions of the Saccharomyces cerevisiae MFA2 gene. Yu S; Teng Y; Lowndes NF; Waters R Mutat Res; 2001 Apr; 485(3):229-36. PubMed ID: 11267834 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]