These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Functional and neurophysiological evidence of the efficacy of trophic pharmacotherapy using an adrenocorticotrophic hormone4-9 analog in experimental allergic encephalomyelitis, an animal model of multiple sclerosis. Duckers HJ; van Dokkum RP; Verhaagen J; Lopes da Silva FH; Gispen WH Neuroscience; 1996 Mar; 71(2):507-21. PubMed ID: 9053803 [TBL] [Abstract][Full Text] [Related]
3. Longitudinal in vivo magnetic resonance imaging studies in experimental allergic encephalomyelitis: effect of a neurotrophic treatment on cortical lesion development. Duckers HJ; Muller HJ; Verhaagen J; Nicolay K; Gispen WH Neuroscience; 1997 Apr; 77(4):1163-73. PubMed ID: 9130795 [TBL] [Abstract][Full Text] [Related]
4. A neurotrophic analogue of ACTH4-9 protects against experimental allergic neuritis. Duckers HJ; Verhaagen J; Gispen WH Ann N Y Acad Sci; 1993 May; 680():493-5. PubMed ID: 8390175 [No Abstract] [Full Text] [Related]
6. Electrophysiological follow-up of acute and chronic experimental allergic encephalomyelitis in the Lewis rat. Deguchi K; Takeuchi H; Miki H; Yamada A; Touge T; Terada S; Nishioka M Eur Arch Psychiatry Clin Neurosci; 1992; 242(1):1-5. PubMed ID: 1390949 [TBL] [Abstract][Full Text] [Related]
7. Evoked potentials (EPs) in experimental allergic encephalomyelitis: a study of EP modifications during the course of a controlled disease. Onofrj M; Gambi D; Bazzano S; Colamartino P; Fulgente T; Malatesta G; Ferracci F Electromyogr Clin Neurophysiol; 1992 Mar; 32(3):125-35. PubMed ID: 1555527 [TBL] [Abstract][Full Text] [Related]
8. Effective use of a neurotrophic ACTH4-9 analogue in the treatment of a peripheral demyelinating syndrome (experimental allergic neuritis). An intervention study. Duckers HJ; Verhaagen J; de Bruijn E; Gispen WH Brain; 1994 Apr; 117 ( Pt 2)():365-74. PubMed ID: 8186962 [TBL] [Abstract][Full Text] [Related]
9. Antagonistic effects of human cyclic MBP(87-99) altered peptide ligands in experimental allergic encephalomyelitis and human T-cell proliferation. Tselios T; Apostolopoulos V; Daliani I; Deraos S; Grdadolnik S; Mavromoustakos T; Melachrinou M; Thymianou S; Probert L; Mouzaki A; Matsoukas J J Med Chem; 2002 Jan; 45(2):275-83. PubMed ID: 11784132 [TBL] [Abstract][Full Text] [Related]
10. Protection by an ACTH4-9 analogue against the toxic effects of cisplatin and taxol on sensory neurons and glial cells in vitro. Hol EM; Mandys V; Sodaar P; Gispen WH; Bär PR J Neurosci Res; 1994 Oct; 39(2):178-85. PubMed ID: 7837287 [TBL] [Abstract][Full Text] [Related]
11. Visual evoked potentials in experimental allergic encephalomyelitis. Bilbool N; Kaitz M; Feinsod M; Soffer D; Abramsky O J Neurol Sci; 1983 Jul; 60(1):105-15. PubMed ID: 6192217 [TBL] [Abstract][Full Text] [Related]
12. Chronic permeability of the central nervous system to mononuclear cells in experimental allergic encephalomyelitis in the Lewis rat. Stohl W; Gonatas NK J Immunol; 1978 Sep; 121(3):844-50. PubMed ID: 308523 [TBL] [Abstract][Full Text] [Related]
13. FTY720 sustains and restores neuronal function in the DA rat model of MOG-induced experimental autoimmune encephalomyelitis. Balatoni B; Storch MK; Swoboda EM; Schönborn V; Koziel A; Lambrou GN; Hiestand PC; Weissert R; Foster CA Brain Res Bull; 2007 Oct; 74(5):307-16. PubMed ID: 17845905 [TBL] [Abstract][Full Text] [Related]
14. Induction of progressive demyelinating autoimmune encephalomyelitis in common marmoset monkeys using MOG34-56 peptide in incomplete freund adjuvant. Jagessar SA; Kap YS; Heijmans N; van Driel N; van Straalen L; Bajramovic JJ; Brok HP; Blezer EL; Bauer J; Laman JD; 't Hart BA J Neuropathol Exp Neurol; 2010 Apr; 69(4):372-85. PubMed ID: 20448482 [TBL] [Abstract][Full Text] [Related]
15. Early detection of liposome brain localization in rat experimental allergic encephalomyelitis. Rousseau V; Denizot B; Le Jeune JJ; Jallet P Exp Brain Res; 1999 Apr; 125(3):255-64. PubMed ID: 10229016 [TBL] [Abstract][Full Text] [Related]
16. Amelioration of experimental autoimmune encephalitis by novel peptides: involvement of T regulatory cells. Shapira E; Brodsky B; Proscura E; Nyska A; Erlanger-Rosengarten A; Wormser U J Autoimmun; 2010 Aug; 35(1):98-106. PubMed ID: 20434883 [TBL] [Abstract][Full Text] [Related]
17. Ellagic acid protects from myelin-associated sphingolipid loss in experimental autoimmune encephalomyelitis. Busto R; Serna J; Perianes-Cachero A; Quintana-Portillo R; García-Seisdedos D; Canfrán-Duque A; Paino CL; Lerma M; Casado ME; Martín-Hidalgo A; Arilla-Ferreiro E; Lasunción MA; Pastor Ó Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Sep; 1863(9):958-967. PubMed ID: 29793057 [TBL] [Abstract][Full Text] [Related]
18. Improvement of experimental allergic encephalomyelitis (EAE) by thymoquinone; an oxidative stress inhibitor. Mohamed A; Shoker A; Bendjelloul F; Mare A; Alzrigh M; Benghuzzi H; Desin T Biomed Sci Instrum; 2003; 39():440-5. PubMed ID: 12724933 [TBL] [Abstract][Full Text] [Related]
19. Efficacy of the selective progesterone receptor agonist Nestorone for chronic experimental autoimmune encephalomyelitis. Garay L; Gonzalez Deniselle MC; Sitruk-Ware R; Guennoun R; Schumacher M; De Nicola AF J Neuroimmunol; 2014 Nov; 276(1-2):89-97. PubMed ID: 25200475 [TBL] [Abstract][Full Text] [Related]
20. Chronic relapsing experimental allergic encephalomyelitis. Correlation of circulating lymphocyte fluctuations with disease activity in suppressed and unsuppressed animals. Traugott U; Stone SH; Raine CS J Neurol Sci; 1979 Mar; 41(1):17-29. PubMed ID: 86602 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]