BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 9875356)

  • 1. Transient features of the thalamic reticular nucleus in the human foetal brain.
    Ulfig N; Nickel J; Bohl J
    Eur J Neurosci; 1998 Dec; 10(12):3773-84. PubMed ID: 9875356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium-binding proteins in the human developing brain.
    Ulfig N
    Adv Anat Embryol Cell Biol; 2002; 165():III-IX, 1-92. PubMed ID: 12236093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of the thalamic reticular nucleus in ferrets with special reference to the perigeniculate and perireticular cell groups.
    Mitrofanis J
    Eur J Neurosci; 1994 Feb; 6(2):253-63. PubMed ID: 7513240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parvalbumin, calbindin, and calretinin mark distinct pathways during development of monkey dorsal lateral geniculate nucleus.
    Yan YH; Winarto A; Mansjoer I; Hendrickson A
    J Neurobiol; 1996 Oct; 31(2):189-209. PubMed ID: 8885200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calretinin immunoreactivity in the monkey hippocampal formation--I. Light and electron microscopic characteristics and co-localization with other calcium-binding proteins.
    Seress L; Nitsch R; Leranth C
    Neuroscience; 1993 Aug; 55(3):775-96. PubMed ID: 8413936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of calcium-binding proteins and GABA transporter (GAT-1) messenger RNA in the human subthalamic nucleus.
    Augood SJ; Waldvogel HJ; Münkle MC; Faull RL; Emson PC
    Neuroscience; 1999 Jan; 88(2):521-34. PubMed ID: 10197772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyto- and chemoarchitecture of the dorsal thalamus of the monotreme Tachyglossus aculeatus, the short beaked echidna.
    Ashwell KW; Paxinos G
    J Chem Neuroanat; 2005 Dec; 30(4):161-83. PubMed ID: 16099140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cajal-Retzius neurons in human cerebral cortex at midgestation show immunoreactivity for neurofilament and calcium-binding proteins.
    Verney C; Derer P
    J Comp Neurol; 1995 Aug; 359(1):144-53. PubMed ID: 8557843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunohistochemical changes of neuronal calcium-binding proteins parvalbumin and calbindin-D-28k following unilateral deafferentation in the rat visual system.
    Schmidt-Kastner R; Meller D; Eysel UT
    Exp Neurol; 1992 Sep; 117(3):230-46. PubMed ID: 1397159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of parvalbumin, calbindin and calretinin containing neurons and terminal networks in relation to sleep associated nuclei in the brain of the giant Zambian mole-rat (Fukomys mechowii).
    Bhagwandin A; Gravett N; Bennett NC; Manger PR
    J Chem Neuroanat; 2013 Sep; 52():69-79. PubMed ID: 23796985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient neurochemical features of the perigeniculate neurons during early postnatal development of the cat.
    Merkulyeva N; Mikhalkin А; Kostareva A; Vavilova T
    J Comp Neurol; 2022 Dec; 530(18):3193-3208. PubMed ID: 36036192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytoarchitectonic heterogeneities in the thalamic reticular nucleus of cats and ferrets.
    Clemence AE; Mitrofanis J
    J Comp Neurol; 1992 Aug; 322(2):167-80. PubMed ID: 1381730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium binding protein immunoreactivity in nucleus rotundus in a reptile, Caiman crocodilus.
    Pritz MB; Siadati A
    Brain Behav Evol; 1999; 53(5-6):277-87. PubMed ID: 10473904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient structures of the human fetal brain: subplate, thalamic reticular complex, ganglionic eminence.
    Ulfig N; Neudörfer F; Bohl J
    Histol Histopathol; 2000 Jul; 15(3):771-90. PubMed ID: 10963122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pattern of selected calcium-binding proteins in the vestibular nuclear complex of two rodent species.
    Kevetter GA
    J Comp Neurol; 1996 Feb; 365(4):575-84. PubMed ID: 8742303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium binding proteins as molecular markers for cat geniculate neurons.
    Demeulemeester H; Arckens L; Vandesande F; Orban GA; Heizmann CW; Pochet R
    Exp Brain Res; 1991; 83(3):513-20. PubMed ID: 2026194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Brn-3a deficiency on parvalbumin-, calbindin D-28k-, calretinin- and calcitonin gene-related peptide-immunoreactive primary sensory neurons in the trigeminal ganglion.
    Ichikawa H; Yamaai T; Jacobowitz DM; Mo Z; Xiang M; Sugimoto T
    Neuroscience; 2002; 113(3):537-46. PubMed ID: 12150774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parvalbumin- and calbindin-containing neurons in the monkey medial geniculate complex: differential distribution and cortical layer specific projections.
    Hashikawa T; Rausell E; Molinari M; Jones EG
    Brain Res; 1991 Mar; 544(2):335-41. PubMed ID: 2039948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light- and electron microscopic localization of parvalbumin, calbindin D-28k and calretinin in the dorsal lateral geniculate nucleus of the rat.
    Lüth HJ; Winkelmann E; Celio MR
    J Hirnforsch; 1993; 34(1):47-56. PubMed ID: 7690790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of calretinin, calbindin-D28k, and parvalbumin in the rat thalamus.
    Arai R; Jacobowitz DM; Deura S
    Brain Res Bull; 1994; 33(5):595-614. PubMed ID: 8187003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.