These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 9876050)
1. Non-N-methyl-D-aspartate receptors may mediate the transmission of emetic signals between visceral vagal afferents and the solitary nucleus in dogs. Furukawa N; Hatano M; Fukuda H; Koga T Neurosci Lett; 1998 Dec; 258(1):53-6. PubMed ID: 9876050 [TBL] [Abstract][Full Text] [Related]
2. Glutaminergic vagal afferents may mediate both retching and gastric adaptive relaxation in dogs. Furukawa N; Hatano M; Fukuda H Auton Neurosci; 2001 Oct; 93(1-2):21-30. PubMed ID: 11695702 [TBL] [Abstract][Full Text] [Related]
6. Role of glutamate receptors in transmission of vagal cardiac input to neurones in the nucleus tractus solitarii in dogs. Seagard JL; Dean C; Hopp FA J Physiol; 1999 Oct; 520 Pt 1(Pt 1):243-53. PubMed ID: 10517815 [TBL] [Abstract][Full Text] [Related]
7. Capsaicin in the 4th ventricle abolishes retching and transmission of emetic vagal afferents to solitary nucleus neurons. Shiroshita Y; Koga T; Fukuda H Eur J Pharmacol; 1997 Nov; 339(2-3):183-92. PubMed ID: 9473134 [TBL] [Abstract][Full Text] [Related]
8. Neurons in the nucleus of the solitary tract mediating inputs from emetic vagal afferents and the area postrema to the pattern generator for the emetic act in dogs. Koga T; Fukuda H Neurosci Res; 1992 Aug; 14(3):166-79. PubMed ID: 1331921 [TBL] [Abstract][Full Text] [Related]
9. A neurokinin-1 receptor antagonist reduced hypersalivation and gastric contractility related to emesis in dogs. Furukawa N; Fukuda H; Hatano M; Koga T; Shiroshita Y Am J Physiol; 1998 Nov; 275(5):G1193-201. PubMed ID: 9815051 [TBL] [Abstract][Full Text] [Related]
10. Short-latency excitation of phrenic motor output mediated by non-NMDA receptors. Karius DR; Speck DF Brain Res; 1995 Jun; 682(1-2):235-8. PubMed ID: 7552320 [TBL] [Abstract][Full Text] [Related]
12. NMDA channels control meal size via central vagal afferent terminals. Gillespie BR; Burns GA; Ritter RC Am J Physiol Regul Integr Comp Physiol; 2005 Nov; 289(5):R1504-11. PubMed ID: 16020524 [TBL] [Abstract][Full Text] [Related]
13. Non-NMDA and NMDA receptors in the synaptic pathway between area postrema and nucleus tractus solitarius. Aylwin ML; Horowitz JM; Bonham AC Am J Physiol; 1998 Oct; 275(4):H1236-46. PubMed ID: 9746471 [TBL] [Abstract][Full Text] [Related]
14. Similarities of the neuronal circuit for the induction of fictive vomiting between ferrets and dogs. Onishi T; Mori T; Yanagihara M; Furukawa N; Fukuda H Auton Neurosci; 2007 Oct; 136(1-2):20-30. PubMed ID: 17478125 [TBL] [Abstract][Full Text] [Related]
15. Synaptic potentials in respiratory neurones during evoked phase switching after NMDA receptor blockade in the cat. Pierrefiche O; Haji A; Foutz AS; Takeda R; Champagnat J; Denavit-Saubie M J Physiol; 1998 Apr; 508 ( Pt 2)(Pt 2):549-59. PubMed ID: 9508816 [TBL] [Abstract][Full Text] [Related]
16. Lesions of the dorsal vagal complex abolish increases in meal size induced by NMDA receptor blockade. Treece BR; Ritter RC; Burns GA Brain Res; 2000 Jul; 872(1-2):37-43. PubMed ID: 10924673 [TBL] [Abstract][Full Text] [Related]
18. Effect of brain stem NMDA-receptor blockade by MK-801 on behavioral and fos responses to vagal satiety signals. Zheng H; Kelly L; Patterson LM; Berthoud HR Am J Physiol; 1999 Oct; 277(4):R1104-11. PubMed ID: 10516251 [TBL] [Abstract][Full Text] [Related]
19. The nucleus raphe magnus suppresses vomiting, and the solitary nucleus and 5-HT are not involved in this suppression. Hattori Y; Hamaguchi C; Yamada Y; Urayama Y; Nakamura E; Koga T; Fukuda H Auton Neurosci; 2010 Jan; 152(1-2):41-8. PubMed ID: 19773202 [TBL] [Abstract][Full Text] [Related]
20. NMDA receptors control vagal afferent excitability in the nucleus of the solitary tract. Vance KM; Rogers RC; Hermann GE Brain Res; 2015 Jan; 1595():84-91. PubMed ID: 25446446 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]