These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 9876050)

  • 1. Non-N-methyl-D-aspartate receptors may mediate the transmission of emetic signals between visceral vagal afferents and the solitary nucleus in dogs.
    Furukawa N; Hatano M; Fukuda H; Koga T
    Neurosci Lett; 1998 Dec; 258(1):53-6. PubMed ID: 9876050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutaminergic vagal afferents may mediate both retching and gastric adaptive relaxation in dogs.
    Furukawa N; Hatano M; Fukuda H
    Auton Neurosci; 2001 Oct; 93(1-2):21-30. PubMed ID: 11695702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleus tractus solitarius and excitatory amino acids in afferent-evoked inspiratory termination.
    Karius DR; Ling L; Speck DF
    J Appl Physiol (1985); 1994 Mar; 76(3):1293-301. PubMed ID: 7911800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The tachykinin NK1 receptor antagonist GR205171 prevents vagal stimulation-induced retching but not neuronal transmission from emetic vagal afferents to solitary nucleus neurons in dogs.
    Fukuda H; Koga T; Furukawa N; Nakamura E; Shiroshita Y
    Brain Res; 1998 Aug; 802(1-2):221-31. PubMed ID: 9748589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMDA and non-NMDA receptors may play distinct roles in timing mechanisms and transmission in the feline respiratory network.
    Pierrefiche O; Foutz AS; Champagnat J; Denavit-SaubiƩ M
    J Physiol; 1994 Feb; 474(3):509-23. PubMed ID: 8014910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of glutamate receptors in transmission of vagal cardiac input to neurones in the nucleus tractus solitarii in dogs.
    Seagard JL; Dean C; Hopp FA
    J Physiol; 1999 Oct; 520 Pt 1(Pt 1):243-53. PubMed ID: 10517815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capsaicin in the 4th ventricle abolishes retching and transmission of emetic vagal afferents to solitary nucleus neurons.
    Shiroshita Y; Koga T; Fukuda H
    Eur J Pharmacol; 1997 Nov; 339(2-3):183-92. PubMed ID: 9473134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurons in the nucleus of the solitary tract mediating inputs from emetic vagal afferents and the area postrema to the pattern generator for the emetic act in dogs.
    Koga T; Fukuda H
    Neurosci Res; 1992 Aug; 14(3):166-79. PubMed ID: 1331921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A neurokinin-1 receptor antagonist reduced hypersalivation and gastric contractility related to emesis in dogs.
    Furukawa N; Fukuda H; Hatano M; Koga T; Shiroshita Y
    Am J Physiol; 1998 Nov; 275(5):G1193-201. PubMed ID: 9815051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-latency excitation of phrenic motor output mediated by non-NMDA receptors.
    Karius DR; Speck DF
    Brain Res; 1995 Jun; 682(1-2):235-8. PubMed ID: 7552320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leptin Sensitizes NTS Neurons to Vagal Input by Increasing Postsynaptic NMDA Receptor Currents.
    Neyens D; Zhao H; Huston NJ; Wayman GA; Ritter RC; Appleyard SM
    J Neurosci; 2020 Sep; 40(37):7054-7064. PubMed ID: 32817248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMDA channels control meal size via central vagal afferent terminals.
    Gillespie BR; Burns GA; Ritter RC
    Am J Physiol Regul Integr Comp Physiol; 2005 Nov; 289(5):R1504-11. PubMed ID: 16020524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-NMDA and NMDA receptors in the synaptic pathway between area postrema and nucleus tractus solitarius.
    Aylwin ML; Horowitz JM; Bonham AC
    Am J Physiol; 1998 Oct; 275(4):H1236-46. PubMed ID: 9746471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Similarities of the neuronal circuit for the induction of fictive vomiting between ferrets and dogs.
    Onishi T; Mori T; Yanagihara M; Furukawa N; Fukuda H
    Auton Neurosci; 2007 Oct; 136(1-2):20-30. PubMed ID: 17478125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic potentials in respiratory neurones during evoked phase switching after NMDA receptor blockade in the cat.
    Pierrefiche O; Haji A; Foutz AS; Takeda R; Champagnat J; Denavit-Saubie M
    J Physiol; 1998 Apr; 508 ( Pt 2)(Pt 2):549-59. PubMed ID: 9508816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lesions of the dorsal vagal complex abolish increases in meal size induced by NMDA receptor blockade.
    Treece BR; Ritter RC; Burns GA
    Brain Res; 2000 Jul; 872(1-2):37-43. PubMed ID: 10924673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inspiration-promoting vagal reflex under NMDA receptor blockade in anaesthetized rabbits.
    Takano K; Kato F
    J Physiol; 1999 Apr; 516 ( Pt 2)(Pt 2):571-82. PubMed ID: 10087354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of brain stem NMDA-receptor blockade by MK-801 on behavioral and fos responses to vagal satiety signals.
    Zheng H; Kelly L; Patterson LM; Berthoud HR
    Am J Physiol; 1999 Oct; 277(4):R1104-11. PubMed ID: 10516251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The nucleus raphe magnus suppresses vomiting, and the solitary nucleus and 5-HT are not involved in this suppression.
    Hattori Y; Hamaguchi C; Yamada Y; Urayama Y; Nakamura E; Koga T; Fukuda H
    Auton Neurosci; 2010 Jan; 152(1-2):41-8. PubMed ID: 19773202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMDA receptors control vagal afferent excitability in the nucleus of the solitary tract.
    Vance KM; Rogers RC; Hermann GE
    Brain Res; 2015 Jan; 1595():84-91. PubMed ID: 25446446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.