These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 9876124)

  • 1. Direct effects of phosphorylation on the preferred backbone conformation of peptides: a nuclear magnetic resonance study.
    Tholey A; Lindemann A; Kinzel V; Reed J
    Biophys J; 1999 Jan; 76(1 Pt 1):76-87. PubMed ID: 9876124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation alters backbone conformational preferences of serine and threonine peptides.
    Kim SY; Jung Y; Hwang GS; Han H; Cho M
    Proteins; 2011 Nov; 79(11):3155-65. PubMed ID: 21989936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-selective intramolecular hydrogen-bonding interactions in phosphorylated serine and threonine dipeptides.
    Lee KK; Kim E; Joo C; Song J; Han H; Cho M
    J Phys Chem B; 2008 Dec; 112(51):16782-7. PubMed ID: 19049417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1H and 31P NMR spectroscopy of phosphorylated model peptides.
    Hoffmann R; Reichert I; Wachs WO; Zeppezauer M; Kalbitzer HR
    Int J Pept Protein Res; 1994 Sep; 44(3):193-8. PubMed ID: 7529751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possible implications of serine and tyrosine residues and intermolecular interactions on the appearance of silk I structure of Bombyx mori silk fibroin-derived synthetic peptides: high-resolution 13C cross-polarization/magic-angle spinning NMR study.
    Asakura T; Ohgo K; Ishida T; Taddei P; Monti P; Kishore R
    Biomacromolecules; 2005; 6(1):468-74. PubMed ID: 15638554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of phosphorylation on the intrinsic propensity of backbone conformations of serine/threonine.
    He E; Yan G; Zhang J; Wang J; Li W
    J Biol Phys; 2016 Mar; 42(2):247-58. PubMed ID: 26759163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1H- and 13C-NMR investigations on cis-trans isomerization of proline peptide bonds and conformation of aromatic side chains in H-Trp-(Pro)n-Tyr-OH peptides.
    PoznaƄski J; Ejchart A; Wierzchowski KL; Ciurak M
    Biopolymers; 1993 May; 33(5):781-95. PubMed ID: 8393714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution conformation of a model hexapeptide containing RGD sequence.
    Dhingra MM
    Indian J Biochem Biophys; 1992 Dec; 29(6):458-64. PubMed ID: 1294461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristic negative ion fragmentations of deprotonated peptides containing post-translational modifications: mono-phosphorylated Ser, Thr and Tyr. A joint experimental and theoretical study.
    Andreazza HJ; Fitzgerald M; Bilusich D; Hoffmann R; Hoffmann P; Eichinger PC; Bowie JH
    Rapid Commun Mass Spectrom; 2008 Oct; 22(20):3305-12. PubMed ID: 18821730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the 1-36 N-terminal fragment of human phospholamban phosphorylated at Ser-16 and Thr-17.
    Pollesello P; Annila A
    Biophys J; 2002 Jul; 83(1):484-90. PubMed ID: 12080135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased backbone flexibility in threonine45-phosphorylated hirudin upon pH change.
    Kipping M; Zarnt T; Kiessig S; Reimer U; Fischer G; Bayer P
    Biochemistry; 2001 Jul; 40(27):7957-63. PubMed ID: 11434764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational studies on calcium binding by tBoc-Leu-Pro-Tyr-Ala-NHCH3, a tyrosine kinase substrate, in a nonpolar solvent.
    Ananthanarayanan VS; Saint-Jean A; Cheesman BV; Hughes DW; Bain AD
    J Biomol Struct Dyn; 1993 Dec; 11(3):509-28. PubMed ID: 8129870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution structure of the phosphorylated form of the histidine-containing phosphocarrier protein HPr from Escherichia coli determined by restrained molecular dynamics from NMR-NOE data.
    van Nuland NA; Boelens R; Scheek RM; Robillard GT
    J Mol Biol; 1995 Feb; 246(1):180-93. PubMed ID: 7853396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of sample pH on the conformational backbone dynamics of a pseudotripeptide (H-Tyr-Tic psi [CH2-NH]Phe-OH) incorporating a reduced peptide bond: an NMR investigation.
    Carpenter KA; Wilkes BC; Schiller PW
    Biopolymers; 1995 Dec; 36(6):735-49. PubMed ID: 8555421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation effect on the GSSS peptide conformation in water: infrared, vibrational circular dichroism, and circular dichroism experiments and comparisons with molecular dynamics simulations.
    Lee KK; Joo C; Yang S; Han H; Cho M
    J Chem Phys; 2007 Jun; 126(23):235102. PubMed ID: 17600445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional structure of the reduced C77S mutant of the Chromatium vinosum high-potential iron-sulfur protein through nuclear magnetic resonance: comparison with the solution structure of the wild-type protein.
    Bentrop D; Bertini I; Capozzi F; Dikiy A; Eltis L; Luchinat C
    Biochemistry; 1996 May; 35(18):5928-36. PubMed ID: 8639555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic retro-inverso dipeptides with two aromatic side chains. II. Conformational analysis.
    Yamazaki T; Nunami K; Goodman M
    Biopolymers; 1991 Nov; 31(13):1513-28. PubMed ID: 1814501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The beta-turn scaffold of tripeptide containing an azaphenylalanine residue.
    Lee HJ; Park HM; Lee KB
    Biophys Chem; 2007 Jan; 125(1):117-26. PubMed ID: 16890344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation effects on cis/trans isomerization and the backbone conformation of serine-proline motifs: accelerated molecular dynamics analysis.
    Hamelberg D; Shen T; McCammon JA
    J Am Chem Soc; 2005 Feb; 127(6):1969-74. PubMed ID: 15701032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bactericidal activity and poly-L-proline II conformation of the tandem repeat sequence of human salivary mucin glycoprotein (MG2).
    Antonyraj KJ; Karunakaran T; Raj PA
    Arch Biochem Biophys; 1998 Aug; 356(2):197-206. PubMed ID: 9705210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.