These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 9876136)

  • 1. Frequency-dependent capacitance of the apical membrane of frog skin: dielectric relaxation processes.
    Awayda MS; Van Driessche W; Helman SI
    Biophys J; 1999 Jan; 76(1 Pt 1):219-32. PubMed ID: 9876136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PGE(2) activation of apical membrane Cl(-) channels in A6 epithelia: impedance analysis.
    Păunescu TG; Helman SI
    Biophys J; 2001 Aug; 81(2):852-66. PubMed ID: 11463630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. K+ transport and capacitance of the basolateral membrane of the larval frog skin.
    Hillyard SD; Cantiello HF; Van Driessche W
    Am J Physiol; 1997 Dec; 273(6):C1995-2001. PubMed ID: 9435506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport-dependent alterations of membrane properties of mammalian colon measured using impedance analysis.
    Wills NK; Clausen C
    J Membr Biol; 1987; 95(1):21-35. PubMed ID: 3560207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. cAmp activation of apical membrane Cl(-) channels: theoretical considerations for impedance analysis.
    Păunescu TG; Helman SI
    Biophys J; 2001 Aug; 81(2):838-51. PubMed ID: 11463629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active transepithelial potassium transport in frog skin via specific potassium channels in the apical membrane.
    Nielsen R
    Acta Physiol Scand; 1984 Feb; 120(2):287-96. PubMed ID: 6324546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na+ transport and impedance properties of cultured renal (A6 and 2F3) epithelia.
    Wills NK; Purcell RK; Clausen C
    J Membr Biol; 1992 Feb; 125(3):273-85. PubMed ID: 1556737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling of volume and Na+ transport in frog skin epithelium.
    Tang CS; Peterson-Yantorno K; Civan MM
    Biol Cell; 1989; 66(1-2):183-90. PubMed ID: 2804459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Net basolateral potassium flux and short-circuit current in ouabain-treated frog skin.
    Cox TC; Woods RE
    Am J Physiol; 1990 Nov; 259(5 Pt 2):R936-42. PubMed ID: 2240277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophysiology and noise analysis of K+-depolarized epithelia of frog skin.
    Tang J; Abramcheck FJ; Van Driessche W; Helman SI
    Am J Physiol; 1985 Nov; 249(5 Pt 1):C421-9. PubMed ID: 2415000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current-voltage relations of the apical and basolateral membranes of the frog skin.
    Schoen HF; Erlij D
    J Gen Physiol; 1985 Aug; 86(2):257-87. PubMed ID: 3876406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of altered Na+ entry on expression of apical and basolateral transport proteins in A6 epithelia.
    Lebowitz J; An B; Edinger RS; Zeidel ML; Johnson JP
    Am J Physiol Renal Physiol; 2003 Sep; 285(3):F524-31. PubMed ID: 12746257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature dependence of transcellular and intracellular parameters of frog skin.
    Dinno MA; Nagel W
    Prog Clin Biol Res; 1988; 258():103-20. PubMed ID: 2454480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interference of a short-chain phospholipid with ion transport pathways in frog skin.
    Unmack MA; Frederiksen O; Willumsen NJ
    Pflugers Arch; 1997 Jul; 434(3):234-41. PubMed ID: 9178620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exocytotic events unrelated to regulation of water permeability in amphibian tight epithelia: effects of oxytocin, PMA and insulin on membrane capacitance, water and Na+ transport.
    Erlij D; Aelvoet I; Van Driessche W
    Biol Cell; 1989; 66(1-2):53-8. PubMed ID: 2508976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the effects of dDAVP and AVP on the sodium transport in the frog skin.
    Bakos P; Ponec J; Lichardus B
    Gen Physiol Biophys; 1990 Feb; 9(1):71-81. PubMed ID: 2311915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passive electrical properties and voltage dependent membrane capacitance of single skeletal muscle fibers.
    Takashima S
    Pflugers Arch; 1985 Feb; 403(2):197-204. PubMed ID: 3872444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AC impedance of the perineurium of the frog sciatic nerve.
    Weerasuriya A; Spangler RA; Rapoport SI; Taylor RE
    Biophys J; 1984 Aug; 46(2):167-74. PubMed ID: 6332648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of sodium concentration on changes of membrane capacitance associated with the electrogenic ion transport by the Na,K-ATPase.
    Sokolov VS; Stukolov SM; Darmostuk AS; Apell HJ
    Eur Biophys J; 1998; 27(6):605-17. PubMed ID: 9791943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency domain impedance measurements of erythrocytes. Constant phase angle impedance characteristics and a phase transition.
    Bao JZ; Davis CC; Schmukler RE
    Biophys J; 1992 May; 61(5):1427-34. PubMed ID: 1600086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.