These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 9876156)

  • 1. Apohorseradish peroxidase unfolding and refolding: intrinsic tryptophan fluorescence studies.
    Lasagna M; Gratton E; Jameson DM; Brunet JE
    Biophys J; 1999 Jan; 76(1 Pt 1):443-50. PubMed ID: 9876156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tubulin equilibrium unfolding followed by time-resolved fluorescence and fluorescence correlation spectroscopy.
    Sánchez SA; Brunet JE; Jameson DM; Lagos R; Monasterio O
    Protein Sci; 2004 Jan; 13(1):81-8. PubMed ID: 14691224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A step towards understanding the folding mechanism of horseradish peroxidase. Tryptophan fluorescence and circular dichroism equilibrium studies.
    Pappa HS; Cass AE
    Eur J Biochem; 1993 Feb; 212(1):227-35. PubMed ID: 8444158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the folding and unfolding reactions of single-chain monellin: evidence for multiple intermediates and competing pathways.
    Patra AK; Udgaonkar JB
    Biochemistry; 2007 Oct; 46(42):11727-43. PubMed ID: 17902706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural alterations of horseradish peroxidase in the presence of low concentrations of guanidinium chloride.
    Chakrabarti A; Basak S
    Eur J Biochem; 1996 Oct; 241(2):462-7. PubMed ID: 8917443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic and thermodynamic studies of the folding/unfolding of a tryptophan-containing mutant of ribonuclease A.
    Sendak RA; Rothwarf DM; Wedemeyer WJ; Houry WA; Scheraga HA
    Biochemistry; 1996 Oct; 35(39):12978-92. PubMed ID: 8841145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The folding characteristics of tryptophanase from Escherichia coli.
    Mizobata T; Kawata Y
    J Biochem; 1995 Feb; 117(2):384-91. PubMed ID: 7608129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic refolding barrier of guanidinium chloride denatured goose delta-crystallin leads to regular aggregate formation.
    Yin FY; Chen YH; Yu CM; Pon YC; Lee HJ
    Biophys J; 2007 Aug; 93(4):1235-45. PubMed ID: 17513375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refolding of glutamate dehydrogenase from Bacillus acidocaldarius after guanidinium chloride-induced unfolding.
    Consalvi V; Millevoi S; Chiaraluce R; de Rosa M; Scandurra R
    Biochem Mol Biol Int; 1995 Feb; 35(2):397-407. PubMed ID: 7663395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Denaturation of human Cu/Zn superoxide dismutase by guanidine hydrochloride: a dynamic fluorescence study.
    Mei G; Rosato N; Silva N; Rusch R; Gratton E; Savini I; Finazzi-Agrò A
    Biochemistry; 1992 Aug; 31(32):7224-30. PubMed ID: 1510915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unfolding and refolding of phospholipase C from Bacillus cereus in solutions of guanidinium chloride.
    Little C; Johansen S
    Biochem J; 1979 Jun; 179(3):509-14. PubMed ID: 113000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cofactor and tryptophan accessibility and unfolding of brain glutamate decarboxylase.
    Rust E; Martin DL; Chen CH
    Arch Biochem Biophys; 2001 Aug; 392(2):333-40. PubMed ID: 11488610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antiperoxidase antibodies enhance refolding of horseradish peroxidase.
    Ermolenko DN; Zherdev AV; Dzantiev BB; Popov VO
    Biochem Biophys Res Commun; 2002 Mar; 291(4):959-65. PubMed ID: 11866459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational states in denaturants of cytochrome c and horseradish peroxidases examined by fluorescence and circular dichroism.
    Tsaprailis G; Chan DW; English AM
    Biochemistry; 1998 Feb; 37(7):2004-16. PubMed ID: 9485327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced stability and enhanced surface hydrophobicity drive the binding of apo-aconitase with GroEL during chaperone assisted refolding.
    Gupta P; Mishra S; Chaudhuri TK
    Int J Biochem Cell Biol; 2010 May; 42(5):683-92. PubMed ID: 20060926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unfolding and refolding of Escherichia coli chaperonin GroES is expressed by a three-state model.
    Higurashi T; Nosaka K; Mizobata T; Nagai J; Kawata Y
    J Mol Biol; 1999 Aug; 291(3):703-13. PubMed ID: 10448048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection and characterization using circular dichroism and fluorescence spectroscopy of a stable intermediate conformation formed in the denaturation of bovine carbonic anhydrase with guanidinium chloride.
    Henkens RW; Kitchell BB; Lottich SC; Stein PJ; Williams TJ
    Biochemistry; 1982 Nov; 21(23):5918-23. PubMed ID: 6817784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking unfolding and refolding of single GFPmut2 molecules.
    Cannone F; Bologna S; Campanini B; Diaspro A; Bettati S; Mozzarelli A; Chirico G
    Biophys J; 2005 Sep; 89(3):2033-45. PubMed ID: 15994904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational dynamics of bovine Cu, Zn superoxide dismutase revealed by time-resolved fluorescence spectroscopy of the single tyrosine residue.
    Ferreira ST; Stella L; Gratton E
    Biophys J; 1994 Apr; 66(4):1185-96. PubMed ID: 8038390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.