These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 9876168)
1. Membrane helix orientation from linear dichroism of infrared attenuated total reflection spectra. Bechinger B; Ruysschaert JM; Goormaghtigh E Biophys J; 1999 Jan; 76(1 Pt 1):552-63. PubMed ID: 9876168 [TBL] [Abstract][Full Text] [Related]
2. Structure and orientation of the antibiotic peptide magainin in membranes by solid-state nuclear magnetic resonance spectroscopy. Bechinger B; Zasloff M; Opella SJ Protein Sci; 1993 Dec; 2(12):2077-84. PubMed ID: 8298457 [TBL] [Abstract][Full Text] [Related]
3. Secondary structure and location of a magainin analogue in synthetic phospholipid bilayers. Hirsh DJ; Hammer J; Maloy WL; Blazyk J; Schaefer J Biochemistry; 1996 Oct; 35(39):12733-41. PubMed ID: 8841117 [TBL] [Abstract][Full Text] [Related]
4. Dichroic ratios in polarized Fourier transform infrared for nonaxial symmetry of beta-sheet structures. Marsh D Biophys J; 1997 Jun; 72(6):2710-8. PubMed ID: 9168046 [TBL] [Abstract][Full Text] [Related]
5. Orientation of the infrared transition moments for an alpha-helix. Marsh D; Müller M; Schmitt FJ Biophys J; 2000 May; 78(5):2499-510. PubMed ID: 10777747 [TBL] [Abstract][Full Text] [Related]
6. Translocation of amino acyl residues from the membrane interface to the hydrophobic core: thermodynamic model and experimental analysis using ATR-FTIR spectroscopy. Aisenbrey C; Goormaghtigh E; Ruysschaert JM; Bechinger B Mol Membr Biol; 2006; 23(4):363-74. PubMed ID: 16923729 [TBL] [Abstract][Full Text] [Related]
7. The conformational analysis of peptides using Fourier transform IR spectroscopy. Haris PI; Chapman D Biopolymers; 1995; 37(4):251-63. PubMed ID: 7540054 [TBL] [Abstract][Full Text] [Related]
8. Orientations of helical peptides in membrane bilayers by solid state NMR spectroscopy. Bechinger B; Gierasch LM; Montal M; Zasloff M; Opella SJ Solid State Nucl Magn Reson; 1996 Dec; 7(3):185-91. PubMed ID: 9050156 [TBL] [Abstract][Full Text] [Related]
9. Orientations of amphipathic helical peptides in membrane bilayers determined by solid-state NMR spectroscopy. Bechinger B; Kim Y; Chirlian LE; Gesell J; Neumann JM; Montal M; Tomich J; Zasloff M; Opella SJ J Biomol NMR; 1991 Jul; 1(2):167-73. PubMed ID: 1726781 [TBL] [Abstract][Full Text] [Related]
10. Structure and interactions of magainin antibiotic peptides in lipid bilayers: a solid-state nuclear magnetic resonance investigation. Bechinger B; Zasloff M; Opella SJ Biophys J; 1992 Apr; 62(1):12-4. PubMed ID: 1600092 [No Abstract] [Full Text] [Related]
11. Peripheral and integral membrane binding of peptides characterized by time-dependent fluorescence shifts: focus on antimicrobial peptide LAH₄. Macháň R; Jurkiewicz P; Olżyńska A; Olšinová M; Cebecauer M; Marquette A; Bechinger B; Hof M Langmuir; 2014 Jun; 30(21):6171-9. PubMed ID: 24807004 [TBL] [Abstract][Full Text] [Related]
12. A solid-state NMR index of helical membrane protein structure and topology. Marassi FM; Opella SJ J Magn Reson; 2000 May; 144(1):150-5. PubMed ID: 10783285 [TBL] [Abstract][Full Text] [Related]
13. Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes. Gazit E; Miller IR; Biggin PC; Sansom MS; Shai Y J Mol Biol; 1996 May; 258(5):860-70. PubMed ID: 8637016 [TBL] [Abstract][Full Text] [Related]
14. In situ study by polarization modulated Fourier transform infrared spectroscopy of the structure and orientation of lipids and amphipathic peptides at the air-water interface. Cornut I; Desbat B; Turlet JM; Dufourcq J Biophys J; 1996 Jan; 70(1):305-12. PubMed ID: 8770206 [TBL] [Abstract][Full Text] [Related]
15. Interactions involved in the realignment of membrane-associated helices. An investigation using oriented solid-state NMR and attenuated total reflection Fourier transform infrared spectroscopies. Aisenbrey C; Kinder R; Goormaghtigh E; Ruysschaert JM; Bechinger B J Biol Chem; 2006 Mar; 281(12):7708-16. PubMed ID: 16407268 [TBL] [Abstract][Full Text] [Related]
16. Implications of threonine hydrogen bonding in the glycophorin A transmembrane helix dimer. Smith SO; Eilers M; Song D; Crocker E; Ying W; Groesbeek M; Metz G; Ziliox M; Aimoto S Biophys J; 2002 May; 82(5):2476-86. PubMed ID: 11964235 [TBL] [Abstract][Full Text] [Related]
17. Conformation of magainin-2 and related peptides in aqueous solution and membrane environments probed by Fourier transform infrared spectroscopy. Jackson M; Mantsch HH; Spencer JH Biochemistry; 1992 Aug; 31(32):7289-93. PubMed ID: 1510920 [TBL] [Abstract][Full Text] [Related]
18. The infrared dichroism of transmembrane helical polypeptides. Axelsen PH; Kaufman BK; McElhaney RN; Lewis RN Biophys J; 1995 Dec; 69(6):2770-81. PubMed ID: 8599683 [TBL] [Abstract][Full Text] [Related]
19. Dihedral angles of tripeptides in solution directly determined by polarized Raman and FTIR spectroscopy. Schweitzer-Stenner R Biophys J; 2002 Jul; 83(1):523-32. PubMed ID: 12080139 [TBL] [Abstract][Full Text] [Related]
20. Fourier transform infrared spectroscopy and site-directed isotope labeling as a probe of local secondary structure in the transmembrane domain of phospholamban. Ludlam CF; Arkin IT; Liu XM; Rothman MS; Rath P; Aimoto S; Smith SO; Engelman DM; Rothschild KJ Biophys J; 1996 Apr; 70(4):1728-36. PubMed ID: 8785331 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]