These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 9876507)
1. Effect of various lipid-bile salt mixed micelles on the intestinal absorption of amphotericin-B in rat. Dangi JS; Vyas SP; Dixit VK Drug Dev Ind Pharm; 1998 Jul; 24(7):631-5. PubMed ID: 9876507 [TBL] [Abstract][Full Text] [Related]
2. The role of mixed micelles in drug delivery. I. Solubilization. Dangi JS; Vyas SP; Dixit VK Drug Dev Ind Pharm; 1998 Jul; 24(7):681-4. PubMed ID: 9876515 [TBL] [Abstract][Full Text] [Related]
3. Quantitative estimation of the effects of bile salt surfactant systems on insulin stability and permeability in the rat intestine using a mass balance model. Lane ME; O'driscoll CM; Corrigan OI J Pharm Pharmacol; 2005 Feb; 57(2):169-75. PubMed ID: 15720779 [TBL] [Abstract][Full Text] [Related]
4. Comparison of the leishmanicidal activity of fungizone, liposomal AmB and amphotericin B incorporated into egg lecithin-bile salt mixed micelles. Ramos H; Brajtburg J; Marquez V; Cohen BE Drugs Exp Clin Res; 1995; 21(6):211-6. PubMed ID: 8907695 [TBL] [Abstract][Full Text] [Related]
5. Intestinal bile secretion promotes drug absorption from lipid colloidal phases via induction of supersaturation. Yeap YY; Trevaskis NL; Quach T; Tso P; Charman WN; Porter CJ Mol Pharm; 2013 May; 10(5):1874-89. PubMed ID: 23480483 [TBL] [Abstract][Full Text] [Related]
6. Effects of amphotericin B and cholera toxin on intestinal transport in the rat. An in vivo model for the effects of dihydroxy bile acids and fatty acids on intestinal transport. Ammon HV; Walter LG; Loeffler RF J Lab Clin Med; 1983 Oct; 102(4):509-21. PubMed ID: 6413628 [TBL] [Abstract][Full Text] [Related]
7. The influence of bile salts and mixed micelles on the pharmacokinetics of quinine in rabbits. Dongowski G; Fritzsch B; Giessler J; Härtl A; Kuhlmann O; Neubert RH Eur J Pharm Biopharm; 2005 May; 60(1):147-51. PubMed ID: 15848066 [TBL] [Abstract][Full Text] [Related]
8. Laser light scattering evidence for a common wormlike growth structure of mixed micelles in bile salt- and straight-chain detergent-phosphatidylcholine aqueous systems: relevance to the micellar structure of bile. Cohen DE; Thurston GM; Chamberlin RA; Benedek GB; Carey MC Biochemistry; 1998 Oct; 37(42):14798-814. PubMed ID: 9778354 [TBL] [Abstract][Full Text] [Related]
9. Lipoamino acid-based micelles as promising delivery vehicles for monomeric amphotericin B. Serafim C; Ferreira I; Rijo P; Pinheiro L; Faustino C; Calado A; Garcia-Rio L Int J Pharm; 2016 Jan; 497(1-2):23-35. PubMed ID: 26617315 [TBL] [Abstract][Full Text] [Related]
10. Physicochemical characterization of molecular assemblies of miltefosine and amphotericin B. Ménez C; Legrand P; Rosilio V; Lesieur S; Barratt G Mol Pharm; 2007; 4(2):281-8. PubMed ID: 17397240 [TBL] [Abstract][Full Text] [Related]
11. Biodegradable functional polycarbonate micelles for controlled release of amphotericin B. Wang Y; Ke X; Voo ZX; Yap SSL; Yang C; Gao S; Liu S; Venkataraman S; Obuobi SAO; Khara JS; Yang YY; Ee PLR Acta Biomater; 2016 Dec; 46():211-220. PubMed ID: 27686042 [TBL] [Abstract][Full Text] [Related]
12. The solubility-permeability interplay: mechanistic modeling and predictive application of the impact of micellar solubilization on intestinal permeation. Miller JM; Beig A; Krieg BJ; Carr RA; Borchardt TB; Amidon GE; Amidon GL; Dahan A Mol Pharm; 2011 Oct; 8(5):1848-56. PubMed ID: 21800883 [TBL] [Abstract][Full Text] [Related]
13. A photophysical study on the role of bile salt hydrophobicity in solubilizing amphotericin B aggregates. Selvam S; Andrews ME; Mishra AK J Pharm Sci; 2009 Nov; 98(11):4153-60. PubMed ID: 19283765 [TBL] [Abstract][Full Text] [Related]
14. Resistant Maltodextrin Decreases Micellar Solubility of Lipids and Diffusion of Bile Salt Micelles and Suppresses Incorporation of Micellar Fatty Acids into Caco-2 Cells. Ikeda I; Tamakuni K; Sakuma T; Ozawa R; Inoue N; Kishimoto Y J Nutr Sci Vitaminol (Tokyo); 2016; 62(5):335-340. PubMed ID: 27928121 [TBL] [Abstract][Full Text] [Related]
15. Cholesterol enhances membrane-damaging properties of model bile by increasing the intervesicular-intermixed micellar concentration of hydrophobic bile salts. Narain PK; DeMaria EJ; Heuman DM J Surg Res; 1999 Jun; 84(1):112-9. PubMed ID: 10334899 [TBL] [Abstract][Full Text] [Related]
16. Stability of mixed micellar systems made by solubilizing phosphatidylcholine-cholesterol vesicles by bile salts. Lichtenberg D; Ragimova S; Bor A; Almog S; Vinkler C; Peled Y; Halpern Z Hepatology; 1990 Sep; 12(3 Pt 2):149S-153S; discussion 153S-154S. PubMed ID: 2210643 [TBL] [Abstract][Full Text] [Related]
17. Paracellular and transcellular pathways facilitate insulin permeability in rat gut. Lane ME; Corrigan OI J Pharm Pharmacol; 2006 Feb; 58(2):271-5. PubMed ID: 16451757 [TBL] [Abstract][Full Text] [Related]
18. Conformation and position of membrane-bound amphotericin B deduced from NMR in SDS micelles. Matsumori N; Houdai T; Murata M J Org Chem; 2007 Feb; 72(3):700-6. PubMed ID: 17253784 [TBL] [Abstract][Full Text] [Related]
19. Impact of Gut Microbiota-Mediated Bile Acid Metabolism on the Solubilization Capacity of Bile Salt Micelles and Drug Solubility. Enright EF; Joyce SA; Gahan CG; Griffin BT Mol Pharm; 2017 Apr; 14(4):1251-1263. PubMed ID: 28186768 [TBL] [Abstract][Full Text] [Related]
20. Effects of lipid-based oral formulations on plasma and tissue amphotericin B concentrations and renal toxicity in male rats. Risovic V; Boyd M; Choo E; Wasan KM Antimicrob Agents Chemother; 2003 Oct; 47(10):3339-42. PubMed ID: 14506053 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]