These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 9876916)

  • 1. Prediction of membrane proteins based on classification of transmembrane segments.
    Kihara D; Shimizu T; Kanehisa M
    Protein Eng; 1998 Nov; 11(11):961-70. PubMed ID: 9876916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophobicity and prediction of the secondary structure of membrane proteins and peptides.
    Klevanik AV
    Membr Cell Biol; 2001 Jul; 14(5):673-97. PubMed ID: 11699870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmembrane proteins in the Protein Data Bank: identification and classification.
    Tusnády GE; Dosztányi Z; Simon I
    Bioinformatics; 2004 Nov; 20(17):2964-72. PubMed ID: 15180935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TM Finder: a prediction program for transmembrane protein segments using a combination of hydrophobicity and nonpolar phase helicity scales.
    Deber CM; Wang C; Liu LP; Prior AS; Agrawal S; Muskat BL; Cuticchia AJ
    Protein Sci; 2001 Jan; 10(1):212-9. PubMed ID: 11266608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preference functions for prediction of membrane-buried helices in integral membrane proteins.
    Juretić D; Zucić D; Lucić B; Trinajstić N
    Comput Chem; 1998 Jun; 22(4):279-94. PubMed ID: 9680689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. kPROT: a knowledge-based scale for the propensity of residue orientation in transmembrane segments. Application to membrane protein structure prediction.
    Pilpel Y; Ben-Tal N; Lancet D
    J Mol Biol; 1999 Dec; 294(4):921-35. PubMed ID: 10588897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational differentiation of N-terminal signal peptides and transmembrane helices.
    Yuan Z; Davis MJ; Zhang F; Teasdale RD
    Biochem Biophys Res Commun; 2003 Dec; 312(4):1278-83. PubMed ID: 14652012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MaxSubSeq: an algorithm for segment-length optimization. The case study of the transmembrane spanning segments.
    Fariselli P; Finelli M; Marchignoli D; Martelli PL; Rossi I; Casadio R
    Bioinformatics; 2003 Mar; 19(4):500-5. PubMed ID: 12611805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A predictor of transmembrane alpha-helix domains of proteins based on neural networks.
    Casadio R; Fariselli P; Taroni C; Compiani M
    Eur Biophys J; 1996; 24(3):165-78. PubMed ID: 8852561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using amino acid and peptide composition to predict membrane protein types.
    Yang XG; Luo RY; Feng ZP
    Biochem Biophys Res Commun; 2007 Feb; 353(1):164-9. PubMed ID: 17174938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of membrane protein types from sequences and position-specific scoring matrices.
    Pu X; Guo J; Leung H; Lin Y
    J Theor Biol; 2007 Jul; 247(2):259-65. PubMed ID: 17433369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of Golgi Type II membrane proteins based on their transmembrane domains.
    Yuan Z; Teasdale RD
    Bioinformatics; 2002 Aug; 18(8):1109-15. PubMed ID: 12176834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro translation analysis of integral membrane proteins.
    Bayle D; Weeks D; Hallen S; Melchers K; Bamberg K; Sachs G
    J Recept Signal Transduct Res; 1997; 17(1-3):29-56. PubMed ID: 9029480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of transmembrane segments in proteins utilising multiple sequence alignments.
    Persson B; Argos P
    J Mol Biol; 1994 Mar; 237(2):182-92. PubMed ID: 8126732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of membrane protein types by incorporating amphipathic effects.
    Chou KC; Cai YD
    J Chem Inf Model; 2005; 45(2):407-13. PubMed ID: 15807506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Alpha Helical Transmembrane Proteins Using HMMs.
    Tsaousis GN; Theodoropoulou MC; Hamodrakas SJ; Bagos PG
    Methods Mol Biol; 2017; 1552():63-82. PubMed ID: 28224491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The modified Mahalanobis Discriminant for predicting outer membrane proteins by using Chou's pseudo amino acid composition.
    Lin H
    J Theor Biol; 2008 May; 252(2):350-6. PubMed ID: 18355838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Beta Barrel Transmembrane Proteins Using HMMs.
    Tsaousis GN; Hamodrakas SJ; Bagos PG
    Methods Mol Biol; 2017; 1552():43-61. PubMed ID: 28224490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing the Prediction of Transmembrane β-Barrel Segments with Chain Learning and Feature Sparse Representation.
    Yin X; Xu YY; Shen HB
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(6):1016-1026. PubMed ID: 26887010
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.