BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9877396)

  • 1. In vitro strength comparison of hydroxyapatite cement and polymethylmethacrylate in subchondral defects in caprine femora.
    Crawford K; Berrey BH; Pierce WA; Welch RD
    J Orthop Res; 1998 Nov; 16(6):715-9. PubMed ID: 9877396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subchondral defects in caprine femora augmented with in situ setting hydroxyapatite cement, polymethylmethacrylate, or autogenous bone graft: biomechanical and histomorphological analysis after two-years.
    Welch RD; Berry BH; Crawford K; Zhang H; Zobitz M; Bronson D; Krishnan S
    J Orthop Res; 2002 May; 20(3):464-72. PubMed ID: 12038619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative analysis of subchondral replacement with polymethylmethacrylate or autogenous bone grafts in dogs.
    Frassica FJ; Gorski JP; Pritchard DJ; Sim FH; Chao EY
    Clin Orthop Relat Res; 1993 Aug; (293):378-90. PubMed ID: 8339507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contained femoral defects: biomechanical analysis of pin augmentation in cement.
    Murray PJ; Damron TA; Green JK; Morgan HD; Werner FW
    Clin Orthop Relat Res; 2004 Mar; (420):251-6. PubMed ID: 15057105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical evaluation of kyphoplasty with calcium sulfate cement in a cadaveric osteoporotic vertebral compression fracture model.
    Perry A; Mahar A; Massie J; Arrieta N; Garfin S; Kim C
    Spine J; 2005; 5(5):489-93. PubMed ID: 16153574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of noncontained distal femoral defects with polymethylmethacrylate and crossed-screw augmentation: a biomechanical study.
    Toy PC; France J; Randall RL; Neel MD; Shorr RI; Heck RK
    J Bone Joint Surg Am; 2006 Jan; 88(1):171-8. PubMed ID: 16391262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects on articular cartilage of subchondral replacement with polymethylmethacrylate and calcium phosphate cement.
    Hisatome T; Yasunaga Y; Ikuta Y; Fujimoto Y
    J Biomed Mater Res; 2002 Mar; 59(3):490-8. PubMed ID: 11774307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium phosphate cement augmentation of the femoral neck defect created after dynamic hip screw removal.
    Strauss EJ; Pahk B; Kummer FJ; Egol K
    J Orthop Trauma; 2007 May; 21(5):295-300. PubMed ID: 17485993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanics of polymethylmethacrylate augmentation.
    Kayanja M; Evans K; Milks R; Lieberman IH
    Clin Orthop Relat Res; 2006 Feb; 443():124-30. PubMed ID: 16462435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical efficacy of vertebroplasty: influence of cement type, BMD, fracture severity, and disc degeneration.
    Luo J; Skrzypiec DM; Pollintine P; Adams MA; Annesley-Williams DJ; Dolan P
    Bone; 2007 Apr; 40(4):1110-9. PubMed ID: 17229596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical effects of unipedicular vertebroplasty on intact vertebrae.
    Higgins KB; Harten RD; Langrana NA; Reiter MF
    Spine (Phila Pa 1976); 2003 Jul; 28(14):1540-7; discussion 1548. PubMed ID: 12865841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro and in vivo study on the effect of autogenous cancellous bone and intramedullary polymethylmethacrylate on allograft construct strength.
    Hanson PD; Warner C; Frassica FJ; Vanderby R; Markel MD
    J Orthop Res; 1998 May; 16(3):277-84. PubMed ID: 9671921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Femoroplasty--augmentation of the proximal femur with a composite bone cement--feasibility, biomechanical properties and osteosynthesis potential.
    Beckmann J; Ferguson SJ; Gebauer M; Luering C; Gasser B; Heini P
    Med Eng Phys; 2007 Sep; 29(7):755-64. PubMed ID: 17023189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of pulsed jet lavage in vertebroplasty on injection forces of polymethylmethacrylate bone cement, material distribution, and potential fat embolism: a cadaver study.
    Benneker LM; Heini PF; Suhm N; Gisep A
    Spine (Phila Pa 1976); 2008 Nov; 33(23):E906-10. PubMed ID: 18978585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis.
    Polikeit A; Nolte LP; Ferguson SJ
    Spine (Phila Pa 1976); 2003 May; 28(10):991-6. PubMed ID: 12768136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteochondral graft fixation using a bioresorbable bone cement.
    Changoor A; Hurtig MB; John Runciman R
    J Biomech; 2006; 39(15):2887-92. PubMed ID: 16388810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limited V-shaped cement augmentation of the proximal femur to prevent secondary hip fractures.
    Fliri L; Sermon A; Wähnert D; Schmoelz W; Blauth M; Windolf M
    J Biomater Appl; 2013 Jul; 28(1):136-43. PubMed ID: 22492197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxyapatite composite resin cement augmentation of pedicle screw fixation.
    Turner AW; Gillies RM; Svehla MJ; Saito M; Walsh WR
    Clin Orthop Relat Res; 2003 Jan; (406):253-61. PubMed ID: 12579026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Biomechanical evaluation of dynamic hip screw with bone cement augmentation in normal bone].
    Li N; Peng A; Chai Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Dec; 21(12):1299-301. PubMed ID: 18277669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the histology and interfacial bonding between carbonated hydroxyapatite cement and bone.
    Mao K; Yang Y; Li J; Hao L; Tang P; Wang Z; Wen N; Du M; Wang J; Wang Y
    Biomed Mater; 2009 Aug; 4(4):045003. PubMed ID: 19531870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.