These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Essential role for ERK mitogen-activated protein kinase in matrix metalloproteinase-9 regulation in rat cortical astrocytes. Arai K; Lee SR; Lo EH Glia; 2003 Sep; 43(3):254-64. PubMed ID: 12898704 [TBL] [Abstract][Full Text] [Related]
3. Role of p38 mitogen-activated protein kinase and extracellular signal-regulated protein kinase kinase in adenosine A2B receptor-mediated interleukin-8 production in human mast cells. Feoktistov I; Goldstein AE; Biaggioni I Mol Pharmacol; 1999 Apr; 55(4):726-34. PubMed ID: 10101031 [TBL] [Abstract][Full Text] [Related]
4. Overexpression of protein kinase C isoforms protects RAW 264.7 macrophages from nitric oxide-induced apoptosis: involvement of c-Jun N-terminal kinase/stress-activated protein kinase, p38 kinase, and CPP-32 protease pathways. Jun CD; Oh CD; Kwak HJ; Pae HO; Yoo JC; Choi BM; Chun JS; Park RK; Chung HT J Immunol; 1999 Mar; 162(6):3395-401. PubMed ID: 10092794 [TBL] [Abstract][Full Text] [Related]
5. Potential role of the JNK/SAPK signal transduction pathway in the induction of iNOS by TNF-alpha. Chan ED; Riches DW Biochem Biophys Res Commun; 1998 Dec; 253(3):790-6. PubMed ID: 9918806 [TBL] [Abstract][Full Text] [Related]
7. A low molecular weight copper chelator crosses the blood-brain barrier and attenuates experimental autoimmune encephalomyelitis. Offen D; Gilgun-Sherki Y; Barhum Y; Benhar M; Grinberg L; Reich R; Melamed E; Atlas D J Neurochem; 2004 Jun; 89(5):1241-51. PubMed ID: 15147517 [TBL] [Abstract][Full Text] [Related]
8. Differential activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinases by methyl methanesulfonate in the liver and brain of rats: implication for organ-specific carcinogenesis. Suh Y; Kang UG; Kim YS; Kim WH; Park SC; Park JB Cancer Res; 2000 Sep; 60(18):5067-73. PubMed ID: 11016630 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of experimental autoimmune encephalomyelitis by a tyrosine kinase inhibitor. Constantin G; Laudanna C; Brocke S; Butcher EC J Immunol; 1999 Jan; 162(2):1144-9. PubMed ID: 9916745 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of nitric oxide synthase for treatment of experimental autoimmune encephalomyelitis. Brenner T; Brocke S; Szafer F; Sobel RA; Parkinson JF; Perez DH; Steinman L J Immunol; 1997 Mar; 158(6):2940-6. PubMed ID: 9058833 [TBL] [Abstract][Full Text] [Related]
11. Lipopolysaccharide and pneumococcal cell wall components activate the mitogen activated protein kinases (MAPK) erk-1, erk-2, and p38 in astrocytes. Schumann RR; Pfeil D; Freyer D; Buerger W; Lamping N; Kirschning CJ; Goebel UB; Weber JR Glia; 1998 Mar; 22(3):295-305. PubMed ID: 9482215 [TBL] [Abstract][Full Text] [Related]
12. Tyrosine kinase inhibition ameliorates the hyperdynamic state and decreases nitric oxide production in cirrhotic rats with portal hypertension and ascites. López-Talavera JC; Levitzki A; Martínez M; Gazit A; Esteban R; Guardia J J Clin Invest; 1997 Aug; 100(3):664-70. PubMed ID: 9239414 [TBL] [Abstract][Full Text] [Related]
13. Activation of mitogen-activated protein kinases in experimental autoimmune encephalomyelitis. Shin T; Ahn M; Jung K; Heo S; Kim D; Jee Y; Lim YK; Yeo EJ J Neuroimmunol; 2003 Jul; 140(1-2):118-25. PubMed ID: 12864979 [TBL] [Abstract][Full Text] [Related]
14. Fingolimod may support neuroprotection via blockade of astrocyte nitric oxide. Colombo E; Di Dario M; Capitolo E; Chaabane L; Newcombe J; Martino G; Farina C Ann Neurol; 2014 Sep; 76(3):325-37. PubMed ID: 25043204 [TBL] [Abstract][Full Text] [Related]