These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 9878288)
1. Influence of production and bioassay methods on infectivity of two ambush foragers (Nematoda: steinernematidae). Grewal PS; Converse V; Georgis R J Invertebr Pathol; 1999 Jan; 73(1):40-4. PubMed ID: 9878288 [TBL] [Abstract][Full Text] [Related]
2. Development of the one-on-one quality assessment assay for entomopathogenic nematodes. Converse V; Miller RW J Invertebr Pathol; 1999 Sep; 74(2):143-8. PubMed ID: 10486226 [TBL] [Abstract][Full Text] [Related]
3. Effect of soil type on infectivity and persistence of the entomopathogenic nematodes Steinernema scarabaei, Steinernema glaseri, Heterorhabditis zealandica, and Heterorhabditis bacteriophora. Koppenhöfer AM; Fuzy EM J Invertebr Pathol; 2006 May; 92(1):11-22. PubMed ID: 16563427 [TBL] [Abstract][Full Text] [Related]
4. Variations in Immune Response of Popillia japonica and Acheta domesticus to Heterorhabditis bacteriophora and Steinernema Species. Wang Y; Gaugler R; Cui L J Nematol; 1994 Mar; 26(1):11-8. PubMed ID: 19279863 [TBL] [Abstract][Full Text] [Related]
5. Attraction of four entomopathogenic nematodes to four white grub species. Koppenhöfer AM; Fuzy EM J Invertebr Pathol; 2008 Oct; 99(2):227-34. PubMed ID: 18597774 [TBL] [Abstract][Full Text] [Related]
6. Temperature effect on novel entomopathogenic nematode Steinernema siamkayai Stock, Somsook and Reid (n. sp.) and its efficacy against Spodoptera litura Fabricius (Lepidoptera: Noctuidae). Wetchayunt W; Rattanapan A; Phairiron S Commun Agric Appl Biol Sci; 2009; 74(2):587-92. PubMed ID: 20222622 [TBL] [Abstract][Full Text] [Related]
7. Relationship between the successful infection by entomopathogenic nematodes and the host immune response. Li XY; Cowles RS; Cowles EA; Gaugler R; Cox-Foster DL Int J Parasitol; 2007 Mar; 37(3-4):365-74. PubMed ID: 17275827 [TBL] [Abstract][Full Text] [Related]
8. Influence of inoculum density on population dynamics and dauer juvenile yields in liquid culture of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida). Hirao A; Ehlers RU Appl Microbiol Biotechnol; 2010 Jan; 85(3):507-15. PubMed ID: 19597815 [TBL] [Abstract][Full Text] [Related]
9. The influence of habitat quality on the foraging strategies of the entomopathogenic nematodes Steinernema carpocapsae and Heterorhabditis megidis. Kruitbos LM; Heritage S; Hapca S; Wilson MJ Parasitology; 2010 Feb; 137(2):303-9. PubMed ID: 19835647 [TBL] [Abstract][Full Text] [Related]
10. Comparison of assays for the determination of entomogenous nematode infectivity. Sims SR; Downing AS; Pershing JC J Nematol; 1992 Jun; 24(2):271-4. PubMed ID: 19282995 [TBL] [Abstract][Full Text] [Related]
11. Entomopathogens (Beauveria bassiana and Steinernema carpocapsae) for biological control of bark-feeding moth Indarbela dea on field-infested litchi trees. Schulte MJ; Martin K; Büchse A; Sauerborn J Pest Manag Sci; 2009 Jan; 65(1):105-12. PubMed ID: 18823078 [TBL] [Abstract][Full Text] [Related]
13. Infectivity, distribution, and persistence of the entomopathogenic nematode Steinernema carpocapsae all strain (Rhabditida: Steinernematidae) applied by sprinklers or boom sprayer to dry-pick cranberries. Hayes AE; Fitzpatrick SM; Webster JM J Econ Entomol; 1999 Jun; 92(3):539-46. PubMed ID: 10407620 [TBL] [Abstract][Full Text] [Related]
14. Pathogenicity, development, and reproduction of Heterorhabditis bacteriophora and Steinernema carpocapsae under axenic in vivo conditions. Han R; Ehlers RU J Invertebr Pathol; 2000 Jan; 75(1):55-8. PubMed ID: 10631058 [TBL] [Abstract][Full Text] [Related]
15. Sand crickets (Gryllus firmus) have low susceptibility to entomopathogenic nematodes and their pathogenic bacteria. Aryal SK; Lu D; Le K; Allison L; Gerke C; Dillman AR J Invertebr Pathol; 2019 Jan; 160():54-60. PubMed ID: 30528638 [TBL] [Abstract][Full Text] [Related]
16. Gnotobiological study of infective juveniles and symbionts of Steinernema scapterisci: A model to clarify the concept of the natural occurrence of monoxenic associations in entomopathogenic nematodes. Bonifassi E; Fischer-Le Saux M; Boemare N; Lanois A; Laumond C; Smart G J Invertebr Pathol; 1999 Sep; 74(2):164-72. PubMed ID: 10486229 [TBL] [Abstract][Full Text] [Related]
17. Influence of nematode age and culture conditions on morphological and physiological parameters in the bacterial vesicle of Steinernema carpocapsae (Nematoda: Steinernematidae). Flores-Lara Y; Renneckar D; Forst S; Goodrich-Blair H; Stock P J Invertebr Pathol; 2007 Jun; 95(2):110-8. PubMed ID: 17376477 [TBL] [Abstract][Full Text] [Related]
18. Effect of temperature on the development of Steinernema carpocapsae and Steinernema feltiae (Nematoda: Rhabditida) in liquid culture. Hirao A; Ehlers RU Appl Microbiol Biotechnol; 2009 Oct; 84(6):1061-7. PubMed ID: 19455323 [TBL] [Abstract][Full Text] [Related]
19. Influence of cell density and phase variants of bacterial symbionts (Xenorhabdus spp.) on dauer juvenile recovery and development of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida). Hirao A; Ehlers RU Appl Microbiol Biotechnol; 2009 Aug; 84(1):77-85. PubMed ID: 19319521 [TBL] [Abstract][Full Text] [Related]
20. Temperature Effects on Heterorhabditis megidis and Steinernema carpocapsae Infectivity to Galleria mellonella. Saunders JE; Webster JM J Nematol; 1999 Sep; 31(3):299-304. PubMed ID: 19270900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]