These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

26 related articles for article (PubMed ID: 9878289)

  • 1. Inhibition of Sodium-Hydrogen Antiport by Antibodies to NHA1 in Brush Border Membrane Vesicles from Whole Aedes aegypti Larvae.
    Sterling KM; Harvey WR
    J Membr Biol; 2019 Feb; 252(1):1-16. PubMed ID: 30392010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomics analysis of Trichoplusia ni midgut epithelial cell brush border membrane vesicles.
    Javed MA; Coutu C; Theilmann DA; Erlandson MA; Hegedus DD
    Insect Sci; 2019 Jun; 26(3):424-440. PubMed ID: 29064633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibodies to a single, conserved epitope in Anopheles APN1 inhibit universal transmission of Plasmodium falciparum and Plasmodium vivax malaria.
    Armistead JS; Morlais I; Mathias DK; Jardim JG; Joy J; Fridman A; Finnefrock AC; Bagchi A; Plebanski M; Scorpio DG; Churcher TS; Borg NA; Sattabongkot J; Dinglasan RR
    Infect Immun; 2014 Feb; 82(2):818-29. PubMed ID: 24478095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A bioinformatics approach for integrated transcriptomic and proteomic comparative analyses of model and non-sequenced anopheline vectors of human malaria parasites.
    Ubaida Mohien C; Colquhoun DR; Mathias DK; Gibbons JG; Armistead JS; Rodriguez MC; Rodriguez MH; Edwards NJ; Hartler J; Thallinger GG; Graham DR; Martinez-Barnetche J; Rokas A; Dinglasan RR
    Mol Cell Proteomics; 2013 Jan; 12(1):120-31. PubMed ID: 23082028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Larval midgut modifications associated with Bti resistance in the yellow fever mosquito using proteomic and transcriptomic approaches.
    Tetreau G; Bayyareddy K; Jones CM; Stalinski R; Riaz MA; Paris M; David JP; Adang MJ; Després L
    BMC Genomics; 2012 Jun; 13():248. PubMed ID: 22703117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ookinete-interacting proteins on the microvillar surface are partitioned into detergent resistant membranes of Anopheles gambiae midguts.
    Parish LA; Colquhoun DR; Ubaida Mohien C; Lyashkov AE; Graham DR; Dinglasan RR
    J Proteome Res; 2011 Nov; 10(11):5150-62. PubMed ID: 21905706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of salivary and intestinal complement system inhibitors in the midgut protection of triatomines and mosquitoes.
    Barros VC; Assumpção JG; Cadete AM; Santos VC; Cavalcante RR; Araújo RN; Pereira MH; Gontijo NF
    PLoS One; 2009 Jun; 4(6):e6047. PubMed ID: 19557176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutagenic analysis of putative domain II and surface residues in mosquitocidal Bacillus thuringiensis Cry19Aa toxin.
    Roh JY; Nair MS; Liu XS; Dean DH
    FEMS Microbiol Lett; 2009 Jun; 295(2):156-63. PubMed ID: 19456870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anopheles gambiae cadherin AgCad1 binds the Cry4Ba toxin of Bacillus thuringiensis israelensis and a fragment of AgCad1 synergizes toxicity.
    Hua G; Zhang R; Abdullah MA; Adang MJ
    Biochemistry; 2008 May; 47(18):5101-10. PubMed ID: 18407662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disruption of Plasmodium falciparum development by antibodies against a conserved mosquito midgut antigen.
    Dinglasan RR; Kalume DE; Kanzok SM; Ghosh AK; Muratova O; Pandey A; Jacobs-Lorena M
    Proc Natl Acad Sci U S A; 2007 Aug; 104(33):13461-6. PubMed ID: 17673553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane proteins of Aedes aegypti larvae bind toxins Cry4B and Cry11A of Bacillus thuringiensis ssp. israelensis.
    Krieger IV; Revina LP; Kostina LI; Buzdin AA; Zalunin IA; Chestukhina GG; Stepanov VM
    Biochemistry (Mosc); 1999 Oct; 64(10):1163-8. PubMed ID: 10561564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the gypsy moth (Lymantria dispar).
    Wolfersberger MG
    Arch Insect Biochem Physiol; 1993; 24(3):139-47. PubMed ID: 7903055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. H(+) V-ATPase-energized transporters in brush border membrane vesicles from whole larvae of Aedes aegypti.
    Harvey WR; Okech BA; Linser PJ; Becnel JJ; Ahearn GA; Sterling KM
    J Insect Physiol; 2010 Oct; 56(10):1377-89. PubMed ID: 20435040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of brush border membrane vesicles from whole Aedes aegypti larvae.
    Abdul-Rauf M; Ellar DJ
    J Invertebr Pathol; 1999 Jan; 73(1):45-51. PubMed ID: 9878289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity and receptor binding properties of a Bacillus thuringiensis CryIC toxin active against both lepidoptera and diptera.
    Abdul-Rauf M; Ellar DJ
    J Invertebr Pathol; 1999 Jan; 73(1):52-8. PubMed ID: 9878290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of Bacillus thuringiensis svar. israelensis Cry toxins with binding sites from Aedes aegypti (Diptera: Culicidae) larvae midgut.
    de Barros Moreira Beltrão H; Silva-Filha MH
    FEMS Microbiol Lett; 2007 Jan; 266(2):163-9. PubMed ID: 17132151
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.