These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 9878344)

  • 21. A direct estimation of the context effect on the efficiency of termination.
    Pavlov MY; Freistroffer DV; Dincbas V; MacDougall J; Buckingham RH; Ehrenberg M
    J Mol Biol; 1998 Dec; 284(3):579-90. PubMed ID: 9826500
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Release factor RF3 abolishes competition between release factor RF1 and ribosome recycling factor (RRF) for a ribosome binding site.
    Pavlov MY; Freistroffer DV; Heurgué-Hamard V; Buckingham RH; Ehrenberg M
    J Mol Biol; 1997 Oct; 273(2):389-401. PubMed ID: 9344747
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of release factor 1 on in vitro protein translation and the elaboration of proteins containing unnatural amino acids.
    Short GF; Golovine SY; Hecht SM
    Biochemistry; 1999 Jul; 38(27):8808-19. PubMed ID: 10393557
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A tripeptide 'anticodon' deciphers stop codons in messenger RNA.
    Ito K; Uno M; Nakamura Y
    Nature; 2000 Feb; 403(6770):680-4. PubMed ID: 10688208
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Principles of stop-codon reading on the ribosome.
    Sund J; Andér M; Aqvist J
    Nature; 2010 Jun; 465(7300):947-50. PubMed ID: 20512119
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Repurposing tRNAs for nonsense suppression.
    Albers S; Beckert B; Matthies MC; Mandava CS; Schuster R; Seuring C; Riedner M; Sanyal S; Torda AE; Wilson DN; Ignatova Z
    Nat Commun; 2021 Jun; 12(1):3850. PubMed ID: 34158503
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular recognition and catalysis in translation termination complexes.
    Klaholz BP
    Trends Biochem Sci; 2011 May; 36(5):282-92. PubMed ID: 21420300
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of Translation Termination: RF1 Dissociation Follows Dissociation of RF3 from the Ribosome.
    Shi X; Joseph S
    Biochemistry; 2016 Nov; 55(45):6344-6354. PubMed ID: 27779391
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Atomic mutagenesis of stop codon nucleotides reveals the chemical prerequisites for release factor-mediated peptide release.
    Hoernes TP; Clementi N; Juen MA; Shi X; Faserl K; Willi J; Gasser C; Kreutz C; Joseph S; Lindner H; Hüttenhofer A; Erlacher MD
    Proc Natl Acad Sci U S A; 2018 Jan; 115(3):E382-E389. PubMed ID: 29298914
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The accuracy of codon recognition by polypeptide release factors.
    Freistroffer DV; Kwiatkowski M; Buckingham RH; Ehrenberg M
    Proc Natl Acad Sci U S A; 2000 Feb; 97(5):2046-51. PubMed ID: 10681447
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amber (UAG) suppressors affected in UGA/UAA-specific polypeptide release factor 2 of bacteria: genetic prediction of initial binding to ribosome preceding stop codon recognition.
    Yoshimura K; Ito K; Nakamura Y
    Genes Cells; 1999 May; 4(5):253-66. PubMed ID: 10421836
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioinformatic, structural, and functional analyses support release factor-like MTRF1 as a protein able to decode nonstandard stop codons beginning with adenine in vertebrate mitochondria.
    Young DJ; Edgar CD; Murphy J; Fredebohm J; Poole ES; Tate WP
    RNA; 2010 Jun; 16(6):1146-55. PubMed ID: 20421313
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ribosome Induces a Closed to Open Conformational Change in Release Factor 1.
    Trappl K; Joseph S
    J Mol Biol; 2016 Mar; 428(6):1333-1344. PubMed ID: 26827724
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Release factor one is nonessential in Escherichia coli.
    Johnson DB; Wang C; Xu J; Schultz MD; Schmitz RJ; Ecker JR; Wang L
    ACS Chem Biol; 2012 Aug; 7(8):1337-44. PubMed ID: 22662873
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamics of ribosomes and release factors during translation termination in
    Adio S; Sharma H; Senyushkina T; Karki P; Maracci C; Wohlgemuth I; Holtkamp W; Peske F; Rodnina MV
    Elife; 2018 Jun; 7():. PubMed ID: 29889659
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Performance of optimized noncanonical amino acid mutagenesis systems in the absence of release factor 1.
    Zheng Y; Lajoie MJ; Italia JS; Chin MA; Church GM; Chatterjee A
    Mol Biosyst; 2016 May; 12(6):1746-9. PubMed ID: 27027374
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Operative Binding of Class I Release Factors and YaeJ Stabilizes the Ribosome in the Nonrotated State.
    Casy W; Prater AR; Cornish PV
    Biochemistry; 2018 Apr; 57(13):1954-1966. PubMed ID: 29499110
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinct roles for release factor 1 and release factor 2 in translational quality control.
    Petropoulos AD; McDonald ME; Green R; Zaher HS
    J Biol Chem; 2014 Jun; 289(25):17589-96. PubMed ID: 24798339
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative analysis of in vivo ribosomal events at UGA and UAG stop codons.
    Mottagui-Tabar S
    Nucleic Acids Res; 1998 Jun; 26(11):2789-96. PubMed ID: 9592169
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ribosomal binding site of release factors RF1 and RF2. A new translational termination assay in vitro.
    Grentzmann G; Kelly PJ
    J Biol Chem; 1997 May; 272(19):12300-4. PubMed ID: 9139673
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.