BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 9878396)

  • 1. Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation.
    Ihara K; Umemura T; Katagiri I; Kitajima-Ihara T; Sugiyama Y; Kimura Y; Mukohata Y
    J Mol Biol; 1999 Jan; 285(1):163-74. PubMed ID: 9878396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Halobacterial rhodopsins.
    Mukohata Y; Ihara K; Tamura T; Sugiyama Y
    J Biochem; 1999 Apr; 125(4):649-57. PubMed ID: 10101275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The primary structures of the Archaeon Halobacterium salinarium blue light receptor sensory rhodopsin II and its transducer, a methyl-accepting protein.
    Zhang W; Brooun A; Mueller MM; Alam M
    Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8230-5. PubMed ID: 8710852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary patterns of retinal-binding pockets of type I rhodopsins and their functions.
    Adamian L; Ouyang Z; Tseng YY; Liang J
    Photochem Photobiol; 2006; 82(6):1426-35. PubMed ID: 16922602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene duplication and gene conversion shape the evolution of archaeal chaperonins.
    Archibald JM; Roger AJ
    J Mol Biol; 2002 Mar; 316(5):1041-50. PubMed ID: 11884142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The novel ion pump rhodopsins from Haloarcula form a family independent from both the bacteriorhodopsin and archaerhodopsin families/tribes.
    Tateno M; Ihara K; Mukohata Y
    Arch Biochem Biophys; 1994 Nov; 315(1):127-32. PubMed ID: 7979388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron crystallographic analysis of two-dimensional crystals of sensory rhodopsin II: a 6.9 A projection structure.
    Kunji ER; Spudich EN; Grisshammer R; Henderson R; Spudich JL
    J Mol Biol; 2001 Apr; 308(2):279-93. PubMed ID: 11327767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The primary structure of sensory rhodopsin II: a member of an additional retinal protein subgroup is coexpressed with its transducer, the halobacterial transducer of rhodopsin II.
    Seidel R; Scharf B; Gautel M; Kleine K; Oesterhelt D; Engelhard M
    Proc Natl Acad Sci U S A; 1995 Mar; 92(7):3036-40. PubMed ID: 7708770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton release and uptake of pharaonis phoborhodopsin (sensory rhodopsin II) reconstituted into phospholipids.
    Iwamoto M; Hasegawa C; Sudo Y; Shimono K; Araiso T; Kamo N
    Biochemistry; 2004 Mar; 43(11):3195-203. PubMed ID: 15023069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton transfer reactions in the F86D and F86E mutants of pharaonis phoborhodopsin (sensory rhodopsin II).
    Iwamoto M; Furutani Y; Kamo N; Kandori H
    Biochemistry; 2003 Mar; 42(10):2790-6. PubMed ID: 12627944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A light-driven proton pump from Haloterrigena turkmenica: functional expression in Escherichia coli membrane and coupling with a H+ co-transporter.
    Kamo N; Hashiba T; Kikukawa T; Araiso T; Ihara K; Nara T
    Biochem Biophys Res Commun; 2006 Mar; 341(2):285-90. PubMed ID: 16413498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization.
    Furutani Y; Bezerra AG; Waschuk S; Sumii M; Brown LS; Kandori H
    Biochemistry; 2004 Aug; 43(30):9636-46. PubMed ID: 15274618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of 6s-trans conformation of retinal chromophore in sensory rhodopsin I and phoborhodopsin.
    Wada A; Akai A; Goshima T; Takahashi T; Ito M
    Bioorg Med Chem Lett; 1998 Jun; 8(11):1365-8. PubMed ID: 9871767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-pass sequencing for microbial comparative genomics.
    Goo YA; Roach J; Glusman G; Baliga NS; Deutsch K; Pan M; Kennedy S; DasSarma S; Ng WV; Hood L
    BMC Genomics; 2004 Jan; 5(1):3. PubMed ID: 14718067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testing the neutral fixation of hetero-oligomerism in the archaeal chaperonin CCT.
    Ruano-Rubio V; Fares MA
    Mol Biol Evol; 2007 Jun; 24(6):1384-96. PubMed ID: 17406022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of charged residues of pharaonis phoborhodopsin (sensory rhodopsin II) in its interaction with the transducer protein.
    Sudo Y; Iwamoto M; Shimono K; Kamo N
    Biochemistry; 2004 Nov; 43(43):13748-54. PubMed ID: 15504037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic potential at the retinal of three archaeal rhodopsins: implications for their different absorption spectra.
    Kloppmann E; Becker T; Ullmann GM
    Proteins; 2005 Dec; 61(4):953-65. PubMed ID: 16247786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterioopsin, haloopsin, and sensory opsin I of the halobacterial isolate Halobacterium sp. strain SG1: three new members of a growing family.
    Soppa J; Duschl J; Oesterhelt D
    J Bacteriol; 1993 May; 175(9):2720-6. PubMed ID: 8478333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of three characteristic amino acid residues of pharaonis phoborhodopsin on the absorption maximum.
    Shimono K; Iwamoto M; Sumi M; Kamo N
    Photochem Photobiol; 2000 Jul; 72(1):141-5. PubMed ID: 10911739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. V108M mutant of pharaonis phoborhodopsin: substitution caused no absorption change but affected its M-state.
    Shimono K; Iwamoto M; Sumi M; Kamo N
    J Biochem; 1998 Aug; 124(2):404-9. PubMed ID: 9685733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.