These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
387 related articles for article (PubMed ID: 9878565)
21. Biosynthesis and secretion of several enzymes in Escherichia coli dnaK and dnaJ mutants. Wolska KI; Lobacz B; Jurkiewicz D; Bugajska E; Kuć M; Jóźwik A Microbios; 2000; 101(400):157-68. PubMed ID: 10756520 [TBL] [Abstract][Full Text] [Related]
22. Synthesis of DnaK and GroEL in Escherichia coli cells exposed to different magnetic field signals. Del Re B; Bersani F; Mesirca P; Giorgi G Bioelectrochemistry; 2006 Sep; 69(1):99-103. PubMed ID: 16464648 [TBL] [Abstract][Full Text] [Related]
23. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones. Rodriguez F; Arsène-Ploetze F; Rist W; Rüdiger S; Schneider-Mergener J; Mayer MP; Bukau B Mol Cell; 2008 Nov; 32(3):347-58. PubMed ID: 18995833 [TBL] [Abstract][Full Text] [Related]
24. Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Tomoyasu T; Ogura T; Tatsuta T; Bukau B Mol Microbiol; 1998 Nov; 30(3):567-81. PubMed ID: 9822822 [TBL] [Abstract][Full Text] [Related]
25. Hsc62, a new DnaK homologue of Escherichia coli. Yoshimune K; Yoshimura T; Esaki N Biochem Biophys Res Commun; 1998 Sep; 250(1):115-8. PubMed ID: 9735342 [TBL] [Abstract][Full Text] [Related]
26. Investigation of the interaction between DnaK and DnaJ by surface plasmon resonance spectroscopy. Mayer MP; Laufen T; Paal K; McCarty JS; Bukau B J Mol Biol; 1999 Jun; 289(4):1131-44. PubMed ID: 10369787 [TBL] [Abstract][Full Text] [Related]
27. Heat-shock response and its contribution to thermotolerance of the nitrogen-fixing cyanobacterium Anabaena sp. strain L-31. Rajaram H; Kumar Apte S Arch Microbiol; 2003 Jun; 179(6):423-9. PubMed ID: 12728302 [TBL] [Abstract][Full Text] [Related]
28. Low temperature or GroEL/ES overproduction permits growth of Escherichia coli cells lacking trigger factor and DnaK. Vorderwülbecke S; Kramer G; Merz F; Kurz TA; Rauch T; Zachmann-Brand B; Bukau B; Deuerling E FEBS Lett; 2004 Feb; 559(1-3):181-7. PubMed ID: 14960329 [TBL] [Abstract][Full Text] [Related]
29. A function for the QKRAA amino acid motif: mediating binding of DnaJ to DnaK. Implications for the association of rheumatoid arthritis with HLA-DR4. Auger I; Roudier J J Clin Invest; 1997 Apr; 99(8):1818-22. PubMed ID: 9109425 [TBL] [Abstract][Full Text] [Related]
30. Kinetics of heat-shock response and inclusion body formation during temperature-induced production of basic fibroblast growth factor in high-cell-density cultures of recombinant Escherichia coli. Hoffmann F; Rinas U Biotechnol Prog; 2000; 16(6):1000-7. PubMed ID: 11101327 [TBL] [Abstract][Full Text] [Related]
31. Effect of null mutations in dnaK and dnaJ genes on conjugational DNA transfer, proteolysis and novobiocin susceptibility of Escherichia coli. Modrzewska M; Karpiński P; Grudniak A; Wolska KI Acta Microbiol Pol; 2002; 51(3):217-24. PubMed ID: 12588096 [TBL] [Abstract][Full Text] [Related]
32. DnaJ dramatically stimulates ATP hydrolysis by DnaK: insight into targeting of Hsp70 proteins to polypeptide substrates. Russell R; Wali Karzai A; Mehl AF; McMacken R Biochemistry; 1999 Mar; 38(13):4165-76. PubMed ID: 10194333 [TBL] [Abstract][Full Text] [Related]
33. Physiological responses of Escherichia coli exposed to different heat-stress kinetics. Guyot S; Pottier L; Ferret E; Gal L; Gervais P Arch Microbiol; 2010 Aug; 192(8):651-61. PubMed ID: 20549191 [TBL] [Abstract][Full Text] [Related]
34. Low temperature of GroEL/ES overproduction permits growth of Escherichia coli cells lacking trigger factor DnaK. Vorderwülbecke S; Kramer G; Merz F; Kurz TA; Rauch T; Zachmann-Brand B; Bukau B; Deuerling E FEBS Lett; 2005 Jun; 579(15):181-7. PubMed ID: 16021693 [TBL] [Abstract][Full Text] [Related]
35. Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE. Groemping Y; Klostermeier D; Herrmann C; Veit T; Seidel R; Reinstein J J Mol Biol; 2001 Feb; 305(5):1173-83. PubMed ID: 11162122 [TBL] [Abstract][Full Text] [Related]
36. Bacterial inclusion bodies are cytotoxic in vivo in absence of functional chaperones DnaK or GroEL. González-Montalbán N; Carrió MM; Cuatrecasas S; Arís A; Villaverde A J Biotechnol; 2005 Sep; 118(4):406-12. PubMed ID: 16024126 [TBL] [Abstract][Full Text] [Related]
37. Structure and energetics of an allele-specific genetic interaction between dnaJ and dnaK: correlation of nuclear magnetic resonance chemical shift perturbations in the J-domain of Hsp40/DnaJ with binding affinity for the ATPase domain of Hsp70/DnaK. Landry SJ Biochemistry; 2003 May; 42(17):4926-36. PubMed ID: 12718534 [TBL] [Abstract][Full Text] [Related]
38. The chaperonin GroEL and other heat-shock proteins, besides DnaK, participate in ribosome biogenesis in Escherichia coli. El Hage A; Sbaï M; Alix JH Mol Gen Genet; 2001 Feb; 264(6):796-808. PubMed ID: 11254127 [TBL] [Abstract][Full Text] [Related]
39. Induction of heat shock proteins in response to primary alcohols in Acinetobacter calcoaceticus. Benndorf D; Loffhagen N; Babel W Electrophoresis; 1999; 20(4-5):781-9. PubMed ID: 10344248 [TBL] [Abstract][Full Text] [Related]
40. Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli. Rinas U; Hoffmann F; Betiku E; Estapé D; Marten S J Biotechnol; 2007 Jan; 127(2):244-57. PubMed ID: 16945443 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]