These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 9878812)

  • 1. EEG evidence of stimulus-directed response dynamics in human somatosensory cortex.
    Kelly EF; Folger SE
    Brain Res; 1999 Jan; 815(2):326-36. PubMed ID: 9878812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Periodic microstimulation of single mechanoreceptive afferents produces frequency-following responses in human EEG.
    Kelly EF; Trulsson M; Folger SE
    J Neurophysiol; 1997 Jan; 77(1):137-44. PubMed ID: 9120554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional neuroimaging studies of human somatosensory cortex.
    McGlone F; Kelly EF; Trulsson M; Francis ST; Westling G; Bowtell R
    Behav Brain Res; 2002 Sep; 135(1-2):147-58. PubMed ID: 12356445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical responses to single mechanoreceptive afferent microstimulation revealed with fMRI.
    Trulsson M; Francis ST; Kelly EF; Westling G; Bowtell R; McGlone F
    Neuroimage; 2001 Apr; 13(4):613-22. PubMed ID: 11305890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-frequency analysis of vibrotactile driving responses by matching pursuit.
    Zygierewicz J; Kelly EF; Blinowska KJ; Durka PJ; Folger SE
    J Neurosci Methods; 1998 Jun; 81(1-2):121-9. PubMed ID: 9696317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Somatotopic finger mapping using MEG: toward an optimal stimulation paradigm.
    Jamali S; Ross B
    Clin Neurophysiol; 2013 Aug; 124(8):1659-70. PubMed ID: 23518470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging human cortical responses to intraneural microstimulation using magnetoencephalography.
    O'Neill GC; Watkins RH; Ackerley R; Barratt EL; Sengupta A; Asghar M; Sanchez Panchuelo RM; Brookes MJ; Glover PM; Wessberg J; Francis ST
    Neuroimage; 2019 Apr; 189():329-340. PubMed ID: 30639839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing linear time-invariance in human primary somatosensory cortex with BOLD fMRI using vibrotactile stimuli.
    Nangini C; Macintosh BJ; Tam F; Staines WR; Graham SJ
    Magn Reson Med; 2005 Feb; 53(2):304-11. PubMed ID: 15678550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency-dependent response of SI RA-class neurons to vibrotactile stimulation of the receptive field.
    Whitsel BL; Kelly EF; Xu M; Tommerdahl M; Quibrera M
    Somatosens Mot Res; 2001; 18(4):263-85. PubMed ID: 11794729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms underlying somatosensory cortical dynamics: I. In vivo studies.
    Lee CJ; Whitsel BL
    Cereb Cortex; 1992; 2(2):81-106. PubMed ID: 1633418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of motion on the skin. V. Effect of stimulus temporal frequency on the representation of moving bar patterns in primary somatosensory cortex of monkeys.
    Gardner EP; Palmer CI; Hämäläinen HA; Warren S
    J Neurophysiol; 1992 Jan; 67(1):37-63. PubMed ID: 1552322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of somatosensory cortical differences between flutter and vibration tactile stimuli.
    Han SW; Chung YG; Kim HS; Chung SC; Park JY; Kim SP
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4402-5. PubMed ID: 24110709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency-dependent patterns of somatosensory cortical responses to vibrotactile stimulation in humans: a fMRI study.
    Chung YG; Kim J; Han SW; Kim HS; Choi MH; Chung SC; Park JY; Kim SP
    Brain Res; 2013 Apr; 1504():47-57. PubMed ID: 23399687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian population receptive field modeling in human somatosensory cortex.
    Puckett AM; Bollmann S; Junday K; Barth M; Cunnington R
    Neuroimage; 2020 Mar; 208():116465. PubMed ID: 31863915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tactile stimulus predictability modulates activity in a tactile-motor cortical network.
    Nelson AJ; Staines WR; McIlroy WE
    Exp Brain Res; 2004 Jan; 154(1):22-32. PubMed ID: 14574427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topographic reorganization of the hand representation in cortical area 3b owl monkeys trained in a frequency-discrimination task.
    Recanzone GH; Merzenich MM; Jenkins WM; Grajski KA; Dinse HR
    J Neurophysiol; 1992 May; 67(5):1031-56. PubMed ID: 1597696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FMRI mapping of the somatosensory cortex with vibratory stimuli. Is there a dependency on stimulus frequency?
    Harrington GS; Hunter Downs J
    Brain Res; 2001 Apr; 897(1-2):188-92. PubMed ID: 11282375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Source activity in the human secondary somatosensory cortex depends on the size of corpus callosum.
    Stancak A; Hoechstetter K; Tintera J; Vrana J; Rachmanova R; Kralik J; Scherg M
    Brain Res; 2002 May; 936(1-2):47-57. PubMed ID: 11988229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensory funneling. I. Psychophysical observations of human subjects and responses of cutaneous mechanoreceptive afferents in the cat to patterned skin stimuli.
    Gardner EP; Spencer WA
    J Neurophysiol; 1972 Nov; 35(6):925-53. PubMed ID: 4654255
    [No Abstract]   [Full Text] [Related]  

  • 20. Activation in SI and SII: the influence of vibrotactile amplitude during passive and task-relevant stimulation.
    Nelson AJ; Staines WR; Graham SJ; McIlroy WE
    Brain Res Cogn Brain Res; 2004 Apr; 19(2):174-84. PubMed ID: 15019713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.