These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 9879071)
1. Effectiveness of control measures against mosquitoes at a constructed wetland in southern California. Walton WE; Workman PD; Randall LA; Jiannino JA; Offill YA J Vector Ecol; 1998 Dec; 23(2):149-60. PubMed ID: 9879071 [TBL] [Abstract][Full Text] [Related]
2. Emergence patterns of Culex mosquitoes at an experimental constructed treatment wetland in southern California. Workman PD; Walton WE J Am Mosq Control Assoc; 2000 Jun; 16(2):124-30. PubMed ID: 10901635 [TBL] [Abstract][Full Text] [Related]
3. Mosquito larval control with Bacillus sphaericus: reduction in adult populations in low-income communities in Nonthaburi Province, Thailand. Mulla MS; Thavara U; Tawatsin A; Kong-ngamsuk W; Chompoosri J; Su T J Vector Ecol; 2001 Dec; 26(2):221-31. PubMed ID: 11813660 [TBL] [Abstract][Full Text] [Related]
4. Documentation of high-level bacillus Sphaericus 2362 resistance in field populations of Culex quinquefasciatus breeding in polluted water in Thailand. Su T; Mulla MS J Am Mosq Control Assoc; 2004 Dec; 20(4):405-11. PubMed ID: 15669382 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of vegetation management strategies for controlling mosquitoes in a southern California constructed wetland. Jiannino JA; Walton WE J Am Mosq Control Assoc; 2004 Mar; 20(1):18-26. PubMed ID: 15088701 [TBL] [Abstract][Full Text] [Related]
6. Effect of marsh design on the abundance of mosquitoes in experimental constructed wetlands in southern California. Walton WE; Workman PD J Am Mosq Control Assoc; 1998 Mar; 14(1):95-107. PubMed ID: 9599330 [TBL] [Abstract][Full Text] [Related]
7. Emergence of resistance and resistance management in field populations of tropical Culex quinquefasciatus to the microbial control agent Bacillus sphaericus. Mulla MS; Thavara U; Tawatsin A; Chomposri J; Su T J Am Mosq Control Assoc; 2003 Mar; 19(1):39-46. PubMed ID: 12674533 [TBL] [Abstract][Full Text] [Related]
8. Production of wetland Chironomidae (Diptera) and the effects of using Bacillus thuringiensis israelensis for mosquito control. Lundström JO; Schäfer ML; Petersson E; Persson Vinnersten TZ; Landin J; Brodin Y Bull Entomol Res; 2010 Feb; 100(1):117-25. PubMed ID: 19497137 [TBL] [Abstract][Full Text] [Related]
9. Efficacy of Bacillus thuringiensis israelensis, Bacillus sphaericus and temephos for managing Anopheles larvae in Eritrea. Shililu JI; Tewolde GM; Brantly E; Githure JI; Mbogo CM; Beier JC; Fusco R; Novak RJ J Am Mosq Control Assoc; 2003 Sep; 19(3):251-8. PubMed ID: 14524547 [TBL] [Abstract][Full Text] [Related]
10. Field trials with Bacillus sphaericus formulations against polluted water mosquitoes in a suburban area of Bangkok, Thailand. Mulla MS; Rodcharoen J; Ngamsuk W; Tawatsin A; Pan-Urai P; Thavara U J Am Mosq Control Assoc; 1997 Dec; 13(4):297-304. PubMed ID: 9474553 [TBL] [Abstract][Full Text] [Related]
11. Distribution of Culex species in vegetation bands of a constructed wetland undergoing integrated mosquito management. Walton WE; Popko DA; Van Dam AR; Merrill A J Am Mosq Control Assoc; 2013 Mar; 29(1):69-73. PubMed ID: 23687860 [TBL] [Abstract][Full Text] [Related]
12. Culex erythrothorax (Diptera: Culicidae): Activity periods, insecticide susceptibility and control in California (USA). Esterly AT; Alemayehu D; Rusmisel B; Busam J; Shelton TL; Sebay T; Zahiri N; Huston JW; Clausnitzer RJ; Haas-Stapleton EJ PLoS One; 2020; 15(7):e0228835. PubMed ID: 32649665 [TBL] [Abstract][Full Text] [Related]
13. Field trials of VectoLex CG, a Bacillus sphaericus larvicide, in Illinois waste tires and catch basins. Siegel JP; Novak RJ J Am Mosq Control Assoc; 1997 Dec; 13(4):305-10. PubMed ID: 9474554 [TBL] [Abstract][Full Text] [Related]
14. Cyt1A from Bacillus thuringiensis restores toxicity of Bacillus sphaericus against resistant Culex quinquefasciatus (Diptera: Culicidae). Wirth MC; Walton WE; Federici BA J Med Entomol; 2000 May; 37(3):401-7. PubMed ID: 15535584 [TBL] [Abstract][Full Text] [Related]
15. Non-larvicidal effects of Bacillus thuringiensis israelensis and Bacillus sphaericus on oviposition and adult mortality of Culex quinquefasciatus Say (Diptera: Culicidae). Zahiri NS; Mulla MS J Vector Ecol; 2005 Jun; 30(1):155-62. PubMed ID: 16007971 [TBL] [Abstract][Full Text] [Related]
16. Efficacy of a flowable concentrate formulation of Bacillus thuringiensis (H-14) against larval mosquitoes in southern Iran. Zaim M; Kasiri H; Motabar M J Am Mosq Control Assoc; 1992 Jun; 8(2):156-8. PubMed ID: 1279118 [TBL] [Abstract][Full Text] [Related]
17. The impact of wetland vegetation drying time on abundance of mosquitoes and other invertebrates. Sanford MR; Keiper JB; Walton WE J Am Mosq Control Assoc; 2003 Dec; 19(4):361-6. PubMed ID: 14710737 [TBL] [Abstract][Full Text] [Related]
18. Mosquito control and bacterial flora in water enriched with organic matter and treated with Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus formulations. Nguyen TT; Su T; Mulla MS J Vector Ecol; 1999 Dec; 24(2):138-53. PubMed ID: 10672543 [TBL] [Abstract][Full Text] [Related]
19. Dispersal, survivorship, and host selection of Culex erythrothorax (Diptera: Culicidae) associated with a constructed wetland in southern California. Walton WE; Workman PD; Tempelis CH J Med Entomol; 1999 Jan; 36(1):30-40. PubMed ID: 10071490 [TBL] [Abstract][Full Text] [Related]
20. Orientation of Culex mosquitoes to carbon dioxide-baited traps: flight manoeuvres and trapping efficiency. Cooperband MF; Cardé RT Med Vet Entomol; 2006 Mar; 20(1):11-26. PubMed ID: 16608486 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]