These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 9880065)

  • 1. A distribution-moment model of deactivation in cardiac muscle.
    Guccione JM; Motabarzadeh I; Zahalak GI
    J Biomech; 1998 Nov; 31(11):1069-73. PubMed ID: 9880065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanics of active contraction in cardiac muscle: Part II--Cylindrical models of the systolic left ventricle.
    Guccione JM; Waldman LK; McCulloch AD
    J Biomech Eng; 1993 Feb; 115(1):82-90. PubMed ID: 8445902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanics of active contraction in cardiac muscle: Part I--Constitutive relations for fiber stress that describe deactivation.
    Guccione JM; McCulloch AD
    J Biomech Eng; 1993 Feb; 115(1):72-81. PubMed ID: 8445901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shortening deactivation of cardiac muscle: physiological mechanisms and clinical implications.
    Leach JK; Priola DV; Grimes LA; Skipper BJ
    J Investig Med; 1999 Sep; 47(8):369-77. PubMed ID: 10510589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The low-affinity Ca2(+)-binding sites in cardiac/slow skeletal muscle troponin C perform distinct functions: site I alone cannot trigger contraction.
    Sweeney HL; Brito RM; Rosevear PR; Putkey JA
    Proc Natl Acad Sci U S A; 1990 Dec; 87(24):9538-42. PubMed ID: 2263608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High tension in sarcomeres hinders myocardial relaxation: A computational study.
    Dupuis LJ; Lumens J; Arts T; Delhaas T
    PLoS One; 2018; 13(10):e0204642. PubMed ID: 30286135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple model of cardiac muscle for multiscale simulation: Passive mechanics, crossbridge kinetics and calcium regulation.
    Syomin FA; Tsaturyan AK
    J Theor Biol; 2017 May; 420():105-116. PubMed ID: 28223172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical modeling of relations between the kinetics of free intracellular calcium and mechanical function of myocardium.
    Katsnelson LB; Markhasin VS
    J Mol Cell Cardiol; 1996 Mar; 28(3):475-86. PubMed ID: 9011631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constancy and variability of contractile efficiency as a function of calcium and cross-bridge kinetics: simulation.
    Yamaguchi H; Takaki M; Matsubara H; Yasuhara S; Suga H
    Am J Physiol; 1996 Apr; 270(4 Pt 2):H1501-8. PubMed ID: 8967394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperative effects due to calcium binding by troponin and their consequences for contraction and relaxation of cardiac muscle under various conditions of mechanical loading.
    Izakov VYa ; Katsnelson LB; Blyakhman FA; Markhasin VS; Shklyar TF
    Circ Res; 1991 Nov; 69(5):1171-84. PubMed ID: 1934350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical regulation of cardiac muscle by coupling calcium kinetics with cross-bridge cycling: a dynamic model.
    Landesberg A; Sideman S
    Am J Physiol; 1994 Aug; 267(2 Pt 2):H779-95. PubMed ID: 8067434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium kinetic and mechanical regulation of the cardiac muscle.
    Landesberg A; Sideman S
    Adv Exp Med Biol; 1993; 346():59-77. PubMed ID: 8184782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical treatment of striated muscle: Dynamic extension of four-state model.
    Honda H; Koiwa Y; Shirato K
    Heart Vessels; 1996; 11(1):44-53. PubMed ID: 9119805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer simulation of excitation-contraction coupling in cardiac muscle. A study of the regulatory role of calcium binding to troponin C.
    Michailova A; Spassov V
    Gen Physiol Biophys; 1997 Mar; 16(1):29-38. PubMed ID: 9290941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac quick-release contraction mechanoenergetics analysis using a cardiac muscle cross-bridge model.
    Taylor TW; Goto Y; Hata K; Takasago T; Saeki A; Nishioka T; Suga H
    Am J Physiol; 1995 Jun; 268(6 Pt 2):H2544-52. PubMed ID: 7611504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sarcomere mechanics in uniform and non-uniform cardiac muscle: a link between pump function and arrhythmias.
    ter Keurs HE; Shinozaki T; Zhang YM; Zhang ML; Wakayama Y; Sugai Y; Kagaya Y; Miura M; Boyden PA; Stuyvers BD; Landesberg A
    Prog Biophys Mol Biol; 2008; 97(2-3):312-31. PubMed ID: 18394686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological consequences of thin filament cooperativity for vertebrate striated muscle contraction: a theoretical study.
    Iwamoto H
    J Muscle Res Cell Motil; 2006; 27(1):21-35. PubMed ID: 16465469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A simple kinetic model of myocardium contraction: calcium-mechanics coupling].
    Semin FA
    Biofizika; 2014; 59(5):951-8. PubMed ID: 25730979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of cardiac muscle contraction based on the cross-bridge mechanism.
    Mashima H; Kabasawa K
    Adv Exp Med Biol; 1984; 170():807-20. PubMed ID: 6741717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial nonuniformity of contraction causes arrhythmogenic Ca2+ waves in rat cardiac muscle.
    Ter Keurs HE; Wakayama Y; Miura M; Stuyvers BD; Boyden PA; Landesberg A
    Ann N Y Acad Sci; 2005 Jun; 1047():345-65. PubMed ID: 16093510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.