These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 988016)

  • 1. Thermal adaptation in yeast: growth temperatures, membrane lipid, and cytochrome composition of psychrophilic, mesophilic, and thermophilic yeasts.
    Arthur H; Watson K
    J Bacteriol; 1976 Oct; 128(1):56-68. PubMed ID: 988016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical correlations among the thermophilic enteric yeasts Torulopsis bovina, Torulopsis pintolopesii, Saccharomyces telluris, and Candida slooffii.
    Watson K; Arthur H; Blakey M
    J Bacteriol; 1980 Aug; 143(2):693-702. PubMed ID: 7193674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leucosporidium yeasts: obligate psychrophiles which alter membrane-lipid and cytochrome composition with temperature.
    Watson K; Arthur H
    J Gen Microbiol; 1976 Nov; 97(1):11-8. PubMed ID: 993782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal adaptation in yeast: obligate psychrophiles are obligate aerobes, and obligate thermophiles are facultative anaerobes.
    Watson K; Arthur H; Morton H
    J Bacteriol; 1978 Nov; 136(2):815-7. PubMed ID: 568620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth, lipid accumulation, and fatty acid composition in obligate psychrophilic, facultative psychrophilic, and mesophilic yeasts.
    Rossi M; Buzzini P; Cordisco L; Amaretti A; Sala M; Raimondi S; Ponzoni C; Pagnoni UM; Matteuzzi D
    FEMS Microbiol Ecol; 2009 Sep; 69(3):363-72. PubMed ID: 19624740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature adaptation in yeasts: the role of fatty acids.
    Suutari M; Liukkonen K; Laakso S
    J Gen Microbiol; 1990 Aug; 136(8):1469-74. PubMed ID: 2262787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane-lipid unsaturation and mitochondrial function in Saacharomyces cerevisiae.
    Watson K; Houghton RL; Bertoli E; Griffiths DE
    Biochem J; 1975 Feb; 146(2):409-16. PubMed ID: 125585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane phospholipids in temperature adaptation of Candida utilis: alterations in fatty acid chain length and unsaturation.
    Suutari M; Rintamäki A; Laakso S
    J Lipid Res; 1997 Apr; 38(4):790-4. PubMed ID: 9144093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-dependent lipid content and fatty acid composition of three thermophilic bacteria.
    Aerts JM; Lauwers AM; Heinen W
    Antonie Van Leeuwenhoek; 1985; 51(2):155-65. PubMed ID: 4037781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of growth temperature on the thermotropic behavior of the membranes of a thermophilic Bacillus. Composition-structure-function relationships.
    Reizer J; Grossowicz N; Barenholz Y
    Biochim Biophys Acta; 1985 May; 815(2):268-80. PubMed ID: 3995029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in mitochondrial oxidative capacities during thermal acclimation of rainbow trout Oncorhynchus mykiss: roles of membrane proteins, phospholipids and their fatty acid compositions.
    Kraffe E; Marty Y; Guderley H
    J Exp Biol; 2007 Jan; 210(Pt 1):149-65. PubMed ID: 17170158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid composition of 30 species of yeast.
    Kaneko H; Hosohara M; Tanaka M; Itoh T
    Lipids; 1976 Dec; 11(12):837-44. PubMed ID: 1011938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal adaptation in yeasts: correlation of substrate transport with membrane lipid composition in psychrophilic and thermotolerant yeasts [proceedings].
    Watson K
    Biochem Soc Trans; 1978; 6(1):293-6. PubMed ID: 640197
    [No Abstract]   [Full Text] [Related]  

  • 14. A mechanism for ethanol-induced damage to liver mitochondrial structure and function.
    Schilling RJ; Reitz RC
    Biochim Biophys Acta; 1980 Dec; 603(2):266-77. PubMed ID: 7459353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatty acid composition of thermophilic, mesophilic, and psychrophilic clostridia.
    Chan M; Himes RH; Akagi JM
    J Bacteriol; 1971 Jun; 106(3):876-81. PubMed ID: 5567555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds in wine.
    Torija MJ; Beltran G; Novo M; Poblet M; Guillamón JM; Mas A; Rozès N
    Int J Food Microbiol; 2003 Aug; 85(1-2):127-36. PubMed ID: 12810277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of phospholipid fatty acids on the kinetics of high and low affinity sites of cytochrome c oxidase.
    Trivedi A; Fantin DJ; Tustanoff ER
    Biochem Cell Biol; 1986 Nov; 64(11):1195-210. PubMed ID: 3030369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steady-state kinetics of ubiquinol-cytochrome c reductase in Saccharomyces cerevisiae mitochondria: effects of fluidity changes obtained by different growth temperatures.
    Cavazzoni M; Svobodova J; De Santis A; Fato R; Lenaz G
    Arch Biochem Biophys; 1993 Jun; 303(2):246-54. PubMed ID: 8390217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipidomic analysis of psychrophilic yeasts cultivated at different temperatures.
    Řezanka T; Kolouchová I; Sigler K
    Biochim Biophys Acta; 2016 Nov; 1861(11):1634-1642. PubMed ID: 27422372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell surface topography of Candida and Leucosporidium yeasts as revealed by scanning electron microscopy.
    Watson K; Arthur H
    J Bacteriol; 1977 Apr; 130(1):312-7. PubMed ID: 856785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.