These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 9880187)
41. Comparison of osteoblast spreading on microstructured dental implant surfaces and cell behaviour in an explant model of osseointegration. A scanning electron microscopic study. Sammons RL; Lumbikanonda N; Gross M; Cantzler P Clin Oral Implants Res; 2005 Dec; 16(6):657-66. PubMed ID: 16307572 [TBL] [Abstract][Full Text] [Related]
42. Bone-supportive behavior of microplasma-sprayed CaP-coated implants: mechanical and histological outcome in the goat. Junker R; Manders PJ; Wolke J; Borisov Y; Jansen JA Clin Oral Implants Res; 2010 Feb; 21(2):189-200. PubMed ID: 19958376 [TBL] [Abstract][Full Text] [Related]
43. Early Healing Evaluation of Commercially Pure Titanium and Ti-6Al-4V Presenting Similar Surface Texture: An In Vivo Study. Castellano A; Gil LF; Bonfante EA; Tovar N; Neiva R; Janal MN; Coelho PG Implant Dent; 2017 Jun; 26(3):338-344. PubMed ID: 28406881 [TBL] [Abstract][Full Text] [Related]
44. A 1-year follow-up of implants of differing surface roughness placed in rabbit bone. Wennerberg A; Ektessabi A; Albrektsson T; Johansson C; Andersson B Int J Oral Maxillofac Implants; 1997; 12(4):486-94. PubMed ID: 9274077 [TBL] [Abstract][Full Text] [Related]
45. Roughness and wettability effect on histological and mechanical response of self-drilling orthodontic mini-implants. Espinar-Escalona E; Bravo-Gonzalez LA; Pegueroles M; Gil FJ Clin Oral Investig; 2016 Jun; 20(5):1115-20. PubMed ID: 26955833 [TBL] [Abstract][Full Text] [Related]
46. A "best fit" approach for synergistic surface parameters to guide the design of candidate implant surfaces. Ay B; Mendes VC; Zhang L; Davies JE J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):2165-2177. PubMed ID: 30677220 [TBL] [Abstract][Full Text] [Related]
47. Osseointegration of surface-blasted implants made of titanium alloy and cobalt-chromium alloy in a rabbit intramedullary model. Jinno T; Goldberg VM; Davy D; Stevenson S J Biomed Mater Res; 1998 Oct; 42(1):20-9. PubMed ID: 9740003 [TBL] [Abstract][Full Text] [Related]
48. The In Vivo Bone Response of Ultraviolet-Irradiated Titanium Implants Modified with Spontaneously Formed Nanostructures: An Experimental Study in Rabbits. Shen J; Liu J; Chen X; Wang X; He F; Wang H Int J Oral Maxillofac Implants; 2016; 31(4):776-84. PubMed ID: 27447142 [TBL] [Abstract][Full Text] [Related]
49. Importance of the Roughness and Residual Stresses of Dental Implants on Fatigue and Osseointegration Behavior. In Vivo Study in Rabbits. Velasco E; Monsalve-Guil L; Jimenez A; Ortiz I; Moreno-Muñoz J; Nuñez-Marquez E; Pegueroles M; Pérez RA; Gil FJ J Oral Implantol; 2016 Dec; 42(6):469-476. PubMed ID: 27589397 [TBL] [Abstract][Full Text] [Related]
50. Enhanced osteoconductivity of micro-structured titanium implants (XiVE S CELLplus) by addition of surface calcium chemistry: a histomorphometric study in the rabbit femur. Park JW; Kim HK; Kim YJ; An CH; Hanawa T Clin Oral Implants Res; 2009 Jul; 20(7):684-90. PubMed ID: 19489932 [TBL] [Abstract][Full Text] [Related]
51. Analysing the optimal value for titanium implant roughness in bone attachment using a tensile test. Rønold HJ; Lyngstadaas SP; Ellingsen JE Biomaterials; 2003 Nov; 24(25):4559-64. PubMed ID: 12950998 [TBL] [Abstract][Full Text] [Related]
52. The cytocompatibility and osseointegration of the Ti implants with XPEED® surfaces. Lee SY; Yang DJ; Yeo S; An HW; Ryoo KH; Park KB Clin Oral Implants Res; 2012 Nov; 23(11):1283-9. PubMed ID: 22093072 [TBL] [Abstract][Full Text] [Related]
53. The influence of recombinant human BMP-2 on bone-implant osseointegration: biomechanical testing and histomorphometric analysis. Lan J; Wang ZF; Shi B; Xia HB; Cheng XR Int J Oral Maxillofac Surg; 2007 Apr; 36(4):345-9. PubMed ID: 17300917 [TBL] [Abstract][Full Text] [Related]
54. Comparison of osseointegration on various implant surfaces after bacterial contamination and cleaning: a rabbit study. Yuan K; Chan YJ; Kung KC; Lee TM Int J Oral Maxillofac Implants; 2014; 29(1):32-40. PubMed ID: 24451851 [TBL] [Abstract][Full Text] [Related]
55. Evaluation of the osseointegration of dental implants coated with calcium carbonate: an animal study. Liu Y; Zhou Y; Jiang T; Liang YD; Zhang Z; Wang YN Int J Oral Sci; 2017 Sep; 9(3):133-138. PubMed ID: 28452375 [TBL] [Abstract][Full Text] [Related]
56. Evaluation of osseous integration of titanium orthopedic screws with novel SLA treatment in porcine model. Lin TH; Hu HT; Wang HC; Wu MC; Wu SW; Yeh ML PLoS One; 2017; 12(11):e0188364. PubMed ID: 29149204 [TBL] [Abstract][Full Text] [Related]
57. An evaluation of the biocompatibility and osseointegration of novel glass fiber reinforced composite implants: In vitro and in vivo studies. Chan YH; Lew WZ; Lu E; Loretz T; Lu L; Lin CT; Feng SW Dent Mater; 2018 Mar; 34(3):470-485. PubMed ID: 29287979 [TBL] [Abstract][Full Text] [Related]
58. The effect of strontium-loaded rough titanium surface on early osseointegration. Huanhuan J; Pengjie H; Sheng X; Binchen W; Li S J Biomater Appl; 2017 Nov; 32(5):561-569. PubMed ID: 29022842 [TBL] [Abstract][Full Text] [Related]
59. In vivo monitoring of the bone healing process around different titanium alloy implant surfaces placed into fresh extraction sockets. Colombo JS; Satoshi S; Okazaki J; Crean SJ; Sloan AJ; Waddington RJ J Dent; 2012 Apr; 40(4):338-46. PubMed ID: 22307025 [TBL] [Abstract][Full Text] [Related]
60. The zirconia implant-bone interface: a preliminary histologic evaluation in rabbits. Hoffmann O; Angelov N; Gallez F; Jung RE; Weber FE Int J Oral Maxillofac Implants; 2008; 23(4):691-5. PubMed ID: 18807566 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]