BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 9880376)

  • 21. iTRAQ-based analysis of the Arabidopsis proteome reveals insights into the potential mechanisms of anthocyanin accumulation regulation in response to phosphate deficiency.
    Wang ZQ; Zhou X; Dong L; Guo J; Chen Y; Zhang Y; Wu L; Xu M
    J Proteomics; 2018 Jul; 184():39-53. PubMed ID: 29920325
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overexpression of GbWRKY1 positively regulates the Pi starvation response by alteration of auxin sensitivity in Arabidopsis.
    Xu L; Jin L; Long L; Liu L; He X; Gao W; Zhu L; Zhang X
    Plant Cell Rep; 2012 Dec; 31(12):2177-88. PubMed ID: 22890372
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic and genomic evidence that sucrose is a global regulator of plant responses to phosphate starvation in Arabidopsis.
    Lei M; Liu Y; Zhang B; Zhao Y; Wang X; Zhou Y; Raghothama KG; Liu D
    Plant Physiol; 2011 Jul; 156(3):1116-30. PubMed ID: 21346170
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiple Patterns of Regulation and Overexpression of a Ribonuclease-Like Pathogenesis-Related Protein Gene, OsPR10a, Conferring Disease Resistance in Rice and Arabidopsis.
    Huang LF; Lin KH; He SL; Chen JL; Jiang JZ; Chen BH; Hou YS; Chen RS; Hong CY; Ho SL
    PLoS One; 2016; 11(6):e0156414. PubMed ID: 27258121
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of phosphate homeostasis by MicroRNA in Arabidopsis.
    Chiou TJ; Aung K; Lin SI; Wu CC; Chiang SF; Su CL
    Plant Cell; 2006 Feb; 18(2):412-21. PubMed ID: 16387831
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Arabidopsis gene hypersensitive to phosphate starvation 3 encodes ethylene overproduction 1.
    Wang L; Dong J; Gao Z; Liu D
    Plant Cell Physiol; 2012 Jun; 53(6):1093-105. PubMed ID: 22623414
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of phosphate deficiency-induced anthocyanin accumulation on the expression of Solanum lycopersicum GLABRA3 (SlGL3) in tomato.
    Tominaga-Wada R; Masakane A; Wada T
    Plant Signal Behav; 2018; 13(6):e1477907. PubMed ID: 29944442
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of miR399f transcription by AtMYB2 affects phosphate starvation responses in Arabidopsis.
    Baek D; Kim MC; Chun HJ; Kang S; Park HC; Shin G; Park J; Shen M; Hong H; Kim WY; Kim DH; Lee SY; Bressan RA; Bohnert HJ; Yun DJ
    Plant Physiol; 2013 Jan; 161(1):362-73. PubMed ID: 23154535
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A senescence-associated S-like RNase in the multicellular green alga Volvox carteri.
    Shimizu T; Inoue T; Shiraishi H
    Gene; 2001 Aug; 274(1-2):227-35. PubMed ID: 11675015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. TOR mediates the autophagy response to altered nucleotide homeostasis in an RNase mutant.
    Kazibwe Z; Soto-Burgos J; MacIntosh GC; Bassham DC
    J Exp Bot; 2020 Dec; 71(22):6907-6920. PubMed ID: 32905584
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence for autophagy-dependent pathways of rRNA turnover in Arabidopsis.
    Floyd BE; Morriss SC; MacIntosh GC; Bassham DC
    Autophagy; 2015; 11(12):2199-212. PubMed ID: 26735434
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Overexpression of an S-like ribonuclease gene, OsRNS4, confers enhanced tolerance to high salinity and hyposensitivity to phytochrome-mediated light signals in rice.
    Zheng J; Wang Y; He Y; Zhou J; Li Y; Liu Q; Xie X
    Plant Sci; 2014 Jan; 214():99-105. PubMed ID: 24268167
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation.
    Miura K; Lee J; Gong Q; Ma S; Jin JB; Yoo CY; Miura T; Sato A; Bohnert HJ; Hasegawa PM
    Plant Physiol; 2011 Feb; 155(2):1000-12. PubMed ID: 21156857
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of the Phosphate-Deficient Responses by MicroRNA156 and its Targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 in Arabidopsis.
    Lei KJ; Lin YM; Ren J; Bai L; Miao YC; An GY; Song CP
    Plant Cell Physiol; 2016 Jan; 57(1):192-203. PubMed ID: 26647245
    [TBL] [Abstract][Full Text] [Related]  

  • 35. miRNA778 and SUVH6 are involved in phosphate homeostasis in Arabidopsis.
    Wang L; ZengJ HQ; Song J; Feng SJ; Yang ZM
    Plant Sci; 2015 Sep; 238():273-85. PubMed ID: 26259194
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Suppression of LX ribonuclease in tomato results in a delay of leaf senescence and abscission.
    Lers A; Sonego L; Green PJ; Burd S
    Plant Physiol; 2006 Oct; 142(2):710-21. PubMed ID: 16920876
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Drastic anthocyanin increase in response to PAP1 overexpression in fls1 knockout mutant confers enhanced osmotic stress tolerance in Arabidopsis thaliana.
    Lee WJ; Jeong CY; Kwon J; Van Kien V; Lee D; Hong SW; Lee H
    Plant Cell Rep; 2016 Nov; 35(11):2369-2379. PubMed ID: 27562381
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arabidopsis PHL2 and PHR1 Act Redundantly as the Key Components of the Central Regulatory System Controlling Transcriptional Responses to Phosphate Starvation.
    Sun L; Song L; Zhang Y; Zheng Z; Liu D
    Plant Physiol; 2016 Jan; 170(1):499-514. PubMed ID: 26586833
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana.
    Zhao L; Liu F; Xu W; Di C; Zhou S; Xue Y; Yu J; Su Z
    Plant Biotechnol J; 2009 Aug; 7(6):550-61. PubMed ID: 19508276
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Long-chain acyl-CoA oxidases of Arabidopsis.
    Hooks MA; Kellas F; Graham IA
    Plant J; 1999 Oct; 20(1):1-13. PubMed ID: 10571860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.