BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

455 related articles for article (PubMed ID: 9880406)

  • 1. Sodium influx plays a major role in the membrane depolarization induced by oxygen and glucose deprivation in rat striatal spiny neurons.
    Calabresi P; Marfia GA; Centonze D; Pisani A; Bernardi G
    Stroke; 1999 Jan; 30(1):171-9. PubMed ID: 9880406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacological inhibition of the Na(+)/Ca(2+) exchanger enhances depolarizations induced by oxygen/glucose deprivation but not responses to excitatory amino acids in rat striatal neurons.
    Calabresi P; Marfia GA; Amoroso S; Pisani A; Bernardi G
    Stroke; 1999 Aug; 30(8):1687-94. PubMed ID: 10436122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological recordings and calcium measurements in striatal large aspiny interneurons in response to combined O2/glucose deprivation.
    Pisani A; Calabresi P; Centonze D; Marfia GA; Bernardi G
    J Neurophysiol; 1999 May; 81(5):2508-16. PubMed ID: 10322086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. L-type Ca2+ channel blockers attenuate electrical changes and Ca2+ rise induced by oxygen/glucose deprivation in cortical neurons.
    Pisani A; Calabresi P; Tozzi A; D'Angelo V; Bernardi G
    Stroke; 1998 Jan; 29(1):196-201; discussion 202. PubMed ID: 9445351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opposite membrane potential changes induced by glucose deprivation in striatal spiny neurons and in large aspiny interneurons.
    Calabresi P; Ascone CM; Centonze D; Pisani A; Sancesario G; D'Angelo V; Bernardi G
    J Neurosci; 1997 Mar; 17(6):1940-9. PubMed ID: 9045723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the mechanisms underlying hypoxia-induced membrane depolarization in striatal neurons.
    Calabresi P; Pisani A; Mercuri NB; Bernardi G
    Brain; 1995 Aug; 118 ( Pt 4)():1027-38. PubMed ID: 7655879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early ionic and membrane potential changes caused by the pesticide rotenone in striatal cholinergic interneurons.
    Bonsi P; Calabresi P; De Persis C; Papa M; Centonze D; Bernardi G; Pisani A
    Exp Neurol; 2004 Jan; 185(1):169-81. PubMed ID: 14697328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors that reverse the persistent depolarization produced by deprivation of oxygen and glucose in rat hippocampal CA1 neurons in vitro.
    Yamamoto S; Tanaka E; Shoji Y; Kudo Y; Inokuchi H; Higashi H
    J Neurophysiol; 1997 Aug; 78(2):903-11. PubMed ID: 9307123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endogenous adenosine mediates the presynaptic inhibition induced by aglycemia at corticostriatal synapses.
    Calabresi P; Centonze D; Pisani A; Bernardi G
    J Neurosci; 1997 Jun; 17(12):4509-16. PubMed ID: 9169511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Na+ influx through Ca2+ channels can promote striatal GABA efflux in Ca(2+)-deficient conditions in response to electrical field depolarization.
    Bernath S; Zigmond MJ; Nisenbaum ES; Vizi ES; Berger TW
    Brain Res; 1993 Dec; 632(1-2):232-8. PubMed ID: 8149231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partial mitochondrial inhibition causes striatal dopamine release suppression and medium spiny neuron depolarization via H2O2 elevation, not ATP depletion.
    Bao L; Avshalumov MV; Rice ME
    J Neurosci; 2005 Oct; 25(43):10029-40. PubMed ID: 16251452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+-activated K+ currents in rat locus coeruleus neurons induced by experimental ischemia, anoxia, and hypoglycemia.
    Murai Y; Ishibashi H; Koyama S; Akaike N
    J Neurophysiol; 1997 Nov; 78(5):2674-81. PubMed ID: 9356417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of potassium channels elicits calcium-dependent plateau potentials in suprachiasmatic neurons of the rat.
    Pierson PM; Liu X; Raggenbass M
    Brain Res; 2005 Mar; 1036(1-2):50-9. PubMed ID: 15725401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms underlying the rapid depolarization produced by deprivation of oxygen and glucose in rat hippocampal CA1 neurons in vitro.
    Tanaka E; Yamamoto S; Kudo Y; Mihara S; Higashi H
    J Neurophysiol; 1997 Aug; 78(2):891-902. PubMed ID: 9307122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionic mechanisms of intrinsic oscillations in neurons of the basolateral amygdaloid complex.
    Pape HC; Driesang RB
    J Neurophysiol; 1998 Jan; 79(1):217-26. PubMed ID: 9425193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabotropic glutamate receptors and cell-type-specific vulnerability in the striatum: implication for ischemia and Huntington's disease.
    Calabresi P; Centonze D; Pisani A; Bernardi G
    Exp Neurol; 1999 Jul; 158(1):97-108. PubMed ID: 10448421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of bursts and high-threshold calcium spikes in neurons of rat auditory thalamus.
    Tennigkeit F; Schwarz DW; Puil E
    Neuroscience; 1998 Apr; 83(4):1063-73. PubMed ID: 9502246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of ion channel blockade on the distribution of Na, K, Ca and other elements in oxygen-glucose deprived CA1 hippocampal neurons.
    LoPachin RM; Gaughan CL; Lehning EJ; Weber ML; Taylor CP
    Neuroscience; 2001; 103(4):971-83. PubMed ID: 11301205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMDA enhances a depolarization-activated inward current in subthalamic neurons.
    Zhu ZT; Munhall A; Shen KZ; Johnson SW
    Neuropharmacology; 2005 Sep; 49(3):317-27. PubMed ID: 15993436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic mechanisms underlying depolarizing responses of an identified insect motor neuron to short periods of hypoxia.
    Le Corronc H; Hue B; Pitman RM
    J Neurophysiol; 1999 Jan; 81(1):307-18. PubMed ID: 9914291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.