These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 9880554)

  • 1. Cross-linking of osteopontin by tissue transglutaminase increases its collagen binding properties.
    Kaartinen MT; Pirhonen A; Linnala-Kankkunen A; Mäenpää PH
    J Biol Chem; 1999 Jan; 274(3):1729-35. PubMed ID: 9880554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transglutaminase-catalyzed cross-linking of osteopontin is inhibited by osteocalcin.
    Kaartinen MT; Pirhonen A; Linnala-Kankkunen A; Mäenpää PH
    J Biol Chem; 1997 Sep; 272(36):22736-41. PubMed ID: 9278432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium and collagen binding properties of osteopontin, bone sialoprotein, and bone acidic glycoprotein-75 from bone.
    Chen Y; Bal BS; Gorski JP
    J Biol Chem; 1992 Dec; 267(34):24871-8. PubMed ID: 1447223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteopontin, a substrate for transglutaminase and factor XIII activity.
    Prince CW; Dickie D; Krumdieck CL
    Biochem Biophys Res Commun; 1991 Jun; 177(3):1205-10. PubMed ID: 1676261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transglutaminase 2-Catalyzed Intramolecular Cross-Linking of Osteopontin.
    Christensen B; Zachariae ED; Scavenius C; Kløverpris S; Oxvig C; Petersen SV; Enghild JJ; Sørensen ES
    Biochemistry; 2016 Jan; 55(2):294-303. PubMed ID: 26678563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone toughness at the molecular scale: A model for fracture toughness using crosslinked osteopontin on synthetic and biogenic mineral substrates.
    Cavelier S; Dastjerdi AK; McKee MD; Barthelat F
    Bone; 2018 May; 110():304-311. PubMed ID: 29486368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteopontin: its transglutaminase-catalyzed posttranslational modifications and cross-linking to fibronectin.
    Beninati S; Senger DR; Cordella-Miele E; Mukherjee AB; Chackalaparampil I; Shanmugam V; Singh K; Mukherjee BB
    J Biochem; 1994 Apr; 115(4):675-82. PubMed ID: 7916341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of a novel cold-adapted calcium-activated transglutaminase: implications for medicine and food processing.
    Alvarez RG; Karki P; Langleite IE; Bakksjø RJ; Eichacker LA; Furnes C
    FEBS Open Bio; 2020 Apr; 10(4):495-506. PubMed ID: 32115900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mineralization-inhibiting effects of transglutaminase-crosslinked polymeric osteopontin.
    Hoac B; Nelea V; Jiang W; Kaartinen MT; McKee MD
    Bone; 2017 Aug; 101():37-48. PubMed ID: 28428079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transglutaminase-catalyzed cross-linking of fibrils of collagen V/XI in A204 rhabdomyosarcoma cells.
    Kleman JP; Aeschlimann D; Paulsson M; van der Rest M
    Biochemistry; 1995 Oct; 34(42):13768-75. PubMed ID: 7577969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cellular response to transglutaminase-cross-linked collagen.
    Chau DY; Collighan RJ; Verderio EA; Addy VL; Griffin M
    Biomaterials; 2005 Nov; 26(33):6518-29. PubMed ID: 15927250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization of transglutaminase-reactive glutamine residues in bovine osteopontin.
    Sørensen ES; Rasmussen LK; Møller L; Jensen PH; Højrup P; Petersen TE
    Biochem J; 1994 Nov; 304 ( Pt 1)(Pt 1):13-6. PubMed ID: 7998923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transglutaminase activity arising from Factor XIIIA is required for stabilization and conversion of plasma fibronectin into matrix in osteoblast cultures.
    Cui C; Wang S; Myneni VD; Hitomi K; Kaartinen MT
    Bone; 2014 Feb; 59():127-38. PubMed ID: 24246248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanically strained cells of the osteoblast lineage organize their extracellular matrix through unique sites of alphavbeta3-integrin expression.
    Wozniak M; Fausto A; Carron CP; Meyer DM; Hruska KA
    J Bone Miner Res; 2000 Sep; 15(9):1731-45. PubMed ID: 10976993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteopontin-hydroxyapatite interactions in vitro: inhibition of hydroxyapatite formation and growth in a gelatin-gel.
    Boskey AL; Maresca M; Ullrich W; Doty SB; Butler WT; Prince CW
    Bone Miner; 1993 Aug; 22(2):147-59. PubMed ID: 8251766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue Transglutaminase, Not Lysyl Oxidase, Dominates Early Calcium-Dependent Remodeling of Fibroblast-Populated Collagen Lattices.
    Simon DD; Niklason LE; Humphrey JD
    Cells Tissues Organs; 2014; 200(2):104-17. PubMed ID: 25924936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a substrate site for liver transglutaminase on the aminopropeptide of type III collagen.
    Bowness JM; Folk JE; Timpl R
    J Biol Chem; 1987 Jan; 262(3):1022-4. PubMed ID: 2879837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of transglutaminase reactive residues in human osteopontin and their role in polymerization.
    Christensen B; Zachariae ED; Scavenius C; Thybo M; Callesen MM; Kløverpris S; Oxvig C; Enghild JJ; Sørensen ES
    PLoS One; 2014; 9(11):e113650. PubMed ID: 25419572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subcellular localization of transglutaminase. Effect of collagen.
    Juprelle-Soret M; Wattiaux-De Coninck S; Wattiaux R
    Biochem J; 1988 Mar; 250(2):421-7. PubMed ID: 2895639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonenzymatic glycation of type I collagen modifies interaction with UMR 201-10B preosteoblastic cells.
    Katayama Y; Celic S; Nagata N; Martin TJ; Findlay DM
    Bone; 1997 Sep; 21(3):237-42. PubMed ID: 9276088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.