BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 9880934)

  • 1. [Leishmaniasis: principles of the immune response and function of nitric oxide].
    Bogdan C
    Berl Munch Tierarztl Wochenschr; 1998; 111(11-12):409-14. PubMed ID: 9880934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vaccination with a plasmid DNA cocktail encoding the nucleosomal histones of Leishmania confers protection against murine cutaneous leishmaniosis.
    Iborra S; Soto M; Carrión J; Alonso C; Requena JM
    Vaccine; 2004 Sep; 22(29-30):3865-76. PubMed ID: 15364433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-lasting protection against canine visceral leishmaniasis using the LiESAp-MDP vaccine in endemic areas of France: double-blind randomised efficacy field trial.
    Lemesre JL; Holzmuller P; Gonçalves RB; Bourdoiseau G; Hugnet C; Cavaleyra M; Papierok G
    Vaccine; 2007 May; 25(21):4223-34. PubMed ID: 17395339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacological evaluation of anti-leishmanial activity by in vivo nitric oxide modulation in Balb/c mice infected with Leishmania major MRHO/IR/75/ER: an Iranian strain of cutaneous leishmaniasis.
    Nahrevanian H; Farahmand M; Aghighi Z; Assmar M; Amirkhani A
    Exp Parasitol; 2007 Jul; 116(3):233-40. PubMed ID: 17335813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sand fly vector saliva selectively modulates macrophage functions that inhibit killing of Leishmania major and nitric oxide production.
    Hall LR; Titus RG
    J Immunol; 1995 Oct; 155(7):3501-6. PubMed ID: 7561045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Leishmania-macrophage interactions: role of cytokines and molecules co-involved in killing].
    Faliero SM; Marzio R; Panaro MA; Brandonisio O
    Parassitologia; 1995 Apr; 37(1):5-15. PubMed ID: 8532367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organ-specific and stage-dependent control of Leishmania major infection by inducible nitric oxide synthase and phagocyte NADPH oxidase.
    Blos M; Schleicher U; Soares Rocha FJ; Meissner U; Röllinghoff M; Bogdan C
    Eur J Immunol; 2003 May; 33(5):1224-34. PubMed ID: 12731047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions between Leishmania parasites and host cells.
    Brandonisio O; Panaro MA; Sisto M; Acquafredda A; Fumarola L; Leogrande D
    Parassitologia; 2000 Dec; 42(3-4):183-90. PubMed ID: 11686076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leishmania major-specific CD8+ T cells are inducers and targets of nitric oxide produced by parasitized macrophages.
    Stefani MM; Müller I; Louis JA
    Eur J Immunol; 1994 Mar; 24(3):746-52. PubMed ID: 7510243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute cysticercosis favours rapid and more severe lesions caused by Leishmania major and Leishmania mexicana infection, a role for alternatively activated macrophages.
    Rodríguez-Sosa M; Rivera-Montoya I; Espinoza A; Romero-Grijalva M; López-Flores R; González J; Terrazas LI
    Cell Immunol; 2006 Aug; 242(2):61-71. PubMed ID: 17118349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclosporin A-mediated killing of Leishmania major by macrophages is independent of reactive nitrogen and endogenous TNF-alpha and is not inhibited by IL-10 and 13.
    Meissner U; Jüttner S; Röllinghoff M; Gessner A
    Parasitol Res; 2003 Feb; 89(3):221-7. PubMed ID: 12541065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vaccine-induced protection against Leishmania amazonensis is obtained in the absence of IL-12/23p40.
    Hernández MX; Barçante TA; Vilela L; Tafuri WL; Afonso LC; Vieira LQ
    Immunol Lett; 2006 May; 105(1):38-47. PubMed ID: 16466810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does the Leishmania major paradigm of pathogenesis and protection hold for New World cutaneous leishmaniases or the visceral disease?
    McMahon-Pratt D; Alexander J
    Immunol Rev; 2004 Oct; 201():206-24. PubMed ID: 15361243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular parasite kill: flow cytometry and NO detection for rapid discrimination between anti-leishmanial activity and macrophage activation.
    Kram D; Thäle C; Kolodziej H; Kiderlen AF
    J Immunol Methods; 2008 Apr; 333(1-2):79-88. PubMed ID: 18313691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenotypical characteristics, biochemical pathways, molecular targets and putative role of nitric oxide-mediated programmed cell death in Leishmania.
    Holzmuller P; Bras-Gonçalves R; Lemesre JL
    Parasitology; 2006; 132 Suppl():S19-32. PubMed ID: 17018162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of mannose receptor during experimental leishmaniasis.
    Akilov OE; Kasuboski RE; Carter CR; McDowell MA
    J Leukoc Biol; 2007 May; 81(5):1188-96. PubMed ID: 17261547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Interpretation of laboratory data during cryptic leishmaniasis in dog].
    Gravino AE
    Parassitologia; 2004 Jun; 46(1-2):227-9. PubMed ID: 15305723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effector mechanism and vaccination against cutaneous leishmaniasis.
    Liew FY
    Behring Inst Mitt; 1991 Feb; (88):239-43. PubMed ID: 2049044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of chemokines and accessory cells in the immunoregulation of cutaneous leishmaniasis.
    Moll H
    Behring Inst Mitt; 1997 Mar; (99):73-8. PubMed ID: 9303204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early infection with Leishmania major restrains pathogenic response to Leishmania amazonensis and parasite growth.
    González-Lombana CZ; Santiago HC; Macedo JP; Seixas VA; Russo RC; Tafuri WL; Afonso LC; Vieira LQ
    Acta Trop; 2008 Apr; 106(1):27-38. PubMed ID: 18313021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.