BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 9881106)

  • 1. The early oxidative biodegradation steps of residual kraft lignin models with laccase.
    Crestini C; Argyropoulos DS
    Bioorg Med Chem; 1998 Nov; 6(11):2161-9. PubMed ID: 9881106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization.
    Bourbonnais R; Paice MG; Reid ID; Lanthier P; Yaguchi M
    Appl Environ Microbiol; 1995 May; 61(5):1876-80. PubMed ID: 7646025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 'Yellow' laccase of Panus tigrinus oxidizes non-phenolic substrates without electron-transfer mediators.
    Leontievsky A; Myasoedova N; Pozdnyakova N; Golovleva L
    FEBS Lett; 1997 Aug; 413(3):446-8. PubMed ID: 9303553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical analysis of the interactions of laccase mediators with lignin model compounds.
    Bourbonnais R; Leech D; Paice MG
    Biochim Biophys Acta; 1998 Mar; 1379(3):381-90. PubMed ID: 9545600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene enhanced transformation of lignin in laccase-ABTS system by accelerating electron transfer.
    Pan Y; Ma H; Huang L; Huang J; Liu Y; Huang Z; Li W; Yang J
    Enzyme Microb Technol; 2018 Dec; 119():17-23. PubMed ID: 30243382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aromatic ring cleavage of a non-phenolic beta-O-4 lignin model dimer by laccase of Trametes versicolor in the presence of 1-hydroxybenzotriazole.
    Kawai S; Nakagawa M; Ohashi H
    FEBS Lett; 1999 Mar; 446(2-3):355-8. PubMed ID: 10100873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The reactivity of phenolic and non-phenolic residual kraft lignin model compounds with Mn(II)-peroxidase from Lentinula edodes.
    Crestini C; D'Annibale A; Sermanni GG; Saladino R
    Bioorg Med Chem; 2000 Feb; 8(2):433-8. PubMed ID: 10722166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of mediators on laccase catalyzed radical formation in lignin.
    Munk L; Andersen ML; Meyer AS
    Enzyme Microb Technol; 2018 Sep; 116():48-56. PubMed ID: 29887016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laccase-initiated cross-linking of lignocellulose fibres using a ultra-filtered lignin isolated from kraft black liquor.
    Elegir G; Bussini D; Antonsson S; Lindström ME; Zoia L
    Appl Microbiol Biotechnol; 2007 Dec; 77(4):809-17. PubMed ID: 17955195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediator compounds.
    Johannes C; Majcherczyk A; Hüttermann A
    Appl Microbiol Biotechnol; 1996 Oct; 46(3):313-7. PubMed ID: 8933845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction, isolation, and characterization of two laccases from the white rot basidiomycete Coriolopsis rigida.
    Saparrat MC; Guillén F; Arambarri AM; Martínez AT; Martínez MJ
    Appl Environ Microbiol; 2002 Apr; 68(4):1534-40. PubMed ID: 11916665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation.
    Bourbonnais R; Paice MG
    FEBS Lett; 1990 Jul; 267(1):99-102. PubMed ID: 2365094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-dependent electrochemical characteristics of a phenolic and non-phenolic compound in the presence of laccase/ABTS system.
    Saha R; Mukhopadhyay M
    PLoS One; 2022; 17(9):e0275338. PubMed ID: 36170267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound.
    Li K; Xu F; Eriksson KE
    Appl Environ Microbiol; 1999 Jun; 65(6):2654-60. PubMed ID: 10347057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemistry and kinetics of fungal laccase mediators.
    Shumakovich GP; Shleev SV; Morozova OV; Khohlov PS; Gazaryan IG; Yaropolov AI
    Bioelectrochemistry; 2006 Sep; 69(1):16-24. PubMed ID: 16318928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Veratryl alcohol oxidase from Pleurotus ostreatus participates in lignin biodegradation and prevents polymerization of laccase-oxidized substrates.
    Marzullo L; Cannio R; Giardina P; Santini MT; Sannia G
    J Biol Chem; 1995 Feb; 270(8):3823-7. PubMed ID: 7876125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the mechanism of the laccase-mediator system in the oxidation of lignin.
    Crestini C; Jurasek L; Argyropoulos DS
    Chemistry; 2003 Nov; 9(21):5371-8. PubMed ID: 14613147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymerization of guaiacol and a phenolic beta-O-4-substructure by Trametes hirsuta laccase in the presence of ABTS.
    Rittstieg K; Suurnäkki A; Suortti T; Kruus K; Guebitz GM; Buchert J
    Biotechnol Prog; 2003; 19(5):1505-9. PubMed ID: 14524712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of a laccase in the degradation of pentachlorophenol.
    Ricotta A; Unz RF; Bollag J
    Bull Environ Contam Toxicol; 1996 Oct; 57(4):560-7. PubMed ID: 8694873
    [No Abstract]   [Full Text] [Related]  

  • 20. Enzymatic modification of kraft lignin through oxidative coupling with water-soluble phenols.
    Lund M; Ragauskas AJ
    Appl Microbiol Biotechnol; 2001 Jun; 55(6):699-703. PubMed ID: 11525617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.