BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9881603)

  • 1. Cartilage formation in a hollow fiber bioreactor studied by proton magnetic resonance microscopy.
    Potter K; Butler JJ; Adams C; Fishbein KW; McFarland EW; Horton WE; Spencer RG
    Matrix Biol; 1998 Nov; 17(7):513-23. PubMed ID: 9881603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Matrix fixed-charge density as determined by magnetic resonance microscopy of bioreactor-derived hyaline cartilage correlates with biochemical and biomechanical properties.
    Chen CT; Fishbein KW; Torzilli PA; Hilger A; Spencer RG; Horton WE
    Arthritis Rheum; 2003 Apr; 48(4):1047-56. PubMed ID: 12687548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 31P NMR spectroscopy of developing cartilage produced from chick chondrocytes in a hollow-fiber bioreactor.
    Petersen EF; Fishbein KW; McFarland EW; Spencer RG
    Magn Reson Med; 2000 Sep; 44(3):367-72. PubMed ID: 10975886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of engineered cartilage tissue to biochemical agents as studied by proton magnetic resonance microscopy.
    Potter K; Butler JJ; Horton WE; Spencer RG
    Arthritis Rheum; 2000 Jul; 43(7):1580-90. PubMed ID: 10902763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cartilage calcification studied by proton nuclear magnetic resonance microscopy.
    Potter K; Leapman RD; Basser PJ; Landis WJ
    J Bone Miner Res; 2002 Apr; 17(4):652-60. PubMed ID: 11918222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EPR oxygen mapping (EPROM) of engineered cartilage grown in a hollow-fiber bioreactor.
    Ellis SJ; Velayutham M; Velan SS; Petersen EF; Zweier JL; Kuppusamy P; Spencer RG
    Magn Reson Med; 2001 Oct; 46(4):819-26. PubMed ID: 11590660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging of collagen and proteoglycan in cartilage sections using Fourier transform infrared spectral imaging.
    Potter K; Kidder LH; Levin IW; Lewis EN; Spencer RG
    Arthritis Rheum; 2001 Apr; 44(4):846-55. PubMed ID: 11315924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fourier transform infrared imaging spectroscopic analysis of tissue engineered cartilage: histologic and biochemical correlations.
    Kim M; Bi X; Horton WE; Spencer RG; Camacho NP
    J Biomed Opt; 2005; 10(3):031105. PubMed ID: 16229630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chondrocytes in culture produce a mechanically functional tissue.
    Fedewa MM; Oegema TR; Schwartz MH; MacLeod A; Lewis JL
    J Orthop Res; 1998 Mar; 16(2):227-36. PubMed ID: 9621897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of bioreactor-cultivated bone by magnetic resonance microscopy and FTIR microspectroscopy.
    Chesnick IE; Avallone FA; Leapman RD; Landis WJ; Eidelman N; Potter K
    Bone; 2007 Apr; 40(4):904-12. PubMed ID: 17174620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative morphological and biochemical analysis of hypertrophic, non-hypertrophic and 1,25(OH)2D3 treated non-hypertrophic chondrocytes.
    Gerstenfeld LC; Kelly CM; Von Deck M; Lian JB
    Connect Tissue Res; 1990; 24(1):29-39. PubMed ID: 1692522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histomorphometry of the embryonic avian growth plate by proton nuclear magnetic resonance microscopy.
    Potter K; Landis WJ; Spencer RG
    J Bone Miner Res; 2001 Jun; 16(6):1092-100. PubMed ID: 11393786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progression and recapitulation of the chondrocyte differentiation program: cartilage matrix protein is a marker for cartilage maturation.
    Chen Q; Johnson DM; Haudenschild DR; Goetinck PF
    Dev Biol; 1995 Nov; 172(1):293-306. PubMed ID: 7589809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioreactor development for tissue-engineered cartilage.
    Wu F; Dunkelman N; Peterson A; Davisson T; De La Torre R; Jain D
    Ann N Y Acad Sci; 1999 Jun; 875():405-11. PubMed ID: 10415587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [An in vitro study on three-dimensional cultivation with dynamic compressive stimulation for cartilage tissue engineering].
    Wang Yongcheng ; Meng H; Yuan Xueling ; Peng J; Guo Q; Lu S; Wang A
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Sep; 28(9):1145-9. PubMed ID: 25509782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of pericellular matrix in development of a mechanically functional neocartilage.
    Graff RD; Kelley SS; Lee GM
    Biotechnol Bioeng; 2003 May; 82(4):457-64. PubMed ID: 12632402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethanol exposure stimulates cartilage differentiation by embryonic limb mesenchyme cells.
    Kulyk WM; Hoffman LM
    Exp Cell Res; 1996 Mar; 223(2):290-300. PubMed ID: 8601406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypertrophic chondrocytes. The terminal stage of differentiation in the chondrogenic cell lineage?
    Pacifici M; Golden EB; Oshima O; Shapiro IM; Leboy PS; Adams SL
    Ann N Y Acad Sci; 1990; 599():45-57. PubMed ID: 2221676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene expression and extracellular matrix ultrastructure of a mineralizing chondrocyte cell culture system.
    Gerstenfeld LC; Landis WJ
    J Cell Biol; 1991 Feb; 112(3):501-13. PubMed ID: 1991793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of different chondrocytes for use in tissue engineering of cartilage model structures.
    Isogai N; Kusuhara H; Ikada Y; Ohtani H; Jacquet R; Hillyer J; Lowder E; Landis WJ
    Tissue Eng; 2006 Apr; 12(4):691-703. PubMed ID: 16674284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.