These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 9881642)
1. Ca2+ enhancement of hemolysis induced by the topical anesthetic oxethazaine in vitro. Yasuno R; Oguma T; Masuda Y Biol Pharm Bull; 1998 Dec; 21(12):1294-9. PubMed ID: 9881642 [TBL] [Abstract][Full Text] [Related]
2. Biphasic effects of oxethazaine, a topical anesthetic, on the intracellular Ca(2+) concentration of PC12 cells. Masuda Y; Oguma T; Kimura A Biochem Pharmacol; 2002 Aug; 64(4):677-87. PubMed ID: 12167487 [TBL] [Abstract][Full Text] [Related]
3. Differences in the actions of some blockers of the calcium-activated potassium permeability in mammalian red cells. Benton DC; Roxburgh CJ; Ganellin CR; Shiner MA; Jenkinson DH Br J Pharmacol; 1999 Jan; 126(1):169-78. PubMed ID: 10051133 [TBL] [Abstract][Full Text] [Related]
4. The metabolic and hemodynamic effects of oxethazaine in the perfused rat liver. Masuda Y; Yoshizawa T; Ozaki M; Tanaka T Jpn J Pharmacol; 1996 Mar; 70(3):243-52. PubMed ID: 8935718 [TBL] [Abstract][Full Text] [Related]
5. Alkaline pH and internal calcium increase Na+ and K+ effluxes in LK sheep red blood cells in Cl--free solutions. Ortiz-Carranza O; Miller ME; Adragna NC; Lauf PK J Membr Biol; 1997 Apr; 156(3):287-95. PubMed ID: 9096069 [TBL] [Abstract][Full Text] [Related]
6. Ca(2+)-activated K+ channel and the activation of Ca2+ influx in vanadate-treated red blood cells. Varecka L; Peterajová E; Sevcík J Gen Physiol Biophys; 1997 Dec; 16(4):339-57. PubMed ID: 9595303 [TBL] [Abstract][Full Text] [Related]
7. Effects of quinine and apamin on the calcium-dependent potassium permeability of mammalian hepatocytes and red cells. Burgess GM; Claret M; Jenkinson DH J Physiol; 1981 Aug; 317():67-90. PubMed ID: 6273550 [TBL] [Abstract][Full Text] [Related]
8. Inhibitory Effect of Oxethazaine on Midazolam Metabolism in Rats. Namba H; Nishimura Y; Kurata N; Iwase M; Hirai T; Kiuchi Y Biol Pharm Bull; 2017; 40(9):1361-1365. PubMed ID: 28867721 [TBL] [Abstract][Full Text] [Related]
9. Complexation of oxethazaine with 2-hydroxypropyl-β-cyclodextrin: increased drug solubility, decreased cytotoxicity and analgesia at inflamed tissues. Prado AR; Yokaichiya F; Franco MKKD; Silva CMGD; Oliveira-Nascimento L; Franz-Montan M; Volpato MC; Cabeça LF; de Paula E J Pharm Pharmacol; 2017 Jun; 69(6):652-662. PubMed ID: 28211640 [TBL] [Abstract][Full Text] [Related]
10. [The effect of membrane-bound calcium on the activity of adenosine triphosphatase from erythrocytes and erythrocyte permeability for monovalent cations]. Orlov SN; Shevchenko AS Biokhimiia; 1978 Feb; 43(2):208-15. PubMed ID: 148300 [TBL] [Abstract][Full Text] [Related]
11. The relationship between calcium and the metabolism of plasma membrane phospholipids in hemolysis induced by brown spider venom phospholipase-D toxin. Chaves-Moreira D; Souza FN; Fogaça RT; Mangili OC; Gremski W; Senff-Ribeiro A; Chaim OM; Veiga SS J Cell Biochem; 2011 Sep; 112(9):2529-40. PubMed ID: 21590705 [TBL] [Abstract][Full Text] [Related]
12. Alteration of hepatic microcirculation by oxethazaine and some vasoconstrictors in the perfused rat liver. Masuda Y; Ozaki M; Oguma T Biochem Pharmacol; 1997 Jun; 53(12):1779-87. PubMed ID: 9256152 [TBL] [Abstract][Full Text] [Related]
13. Investigation of properties of the Ca2+ influx and of the Ca2+-activated K+ efflux (Gárdos effect) in vanadate-treated and ATP-depleted human red blood cells. Kaiserová K; Lakatos B; Peterajová E; Orlický J; Varecka L Gen Physiol Biophys; 2002 Dec; 21(4):429-42. PubMed ID: 12693714 [TBL] [Abstract][Full Text] [Related]
14. Properties of the Ca2+ influx reveal the duality of events underlying the activation by vanadate and fluoride of the Gárdos effect in human red blood cells. Varecka L; Peterajová E; Písová E FEBS Lett; 1998 Aug; 433(1-2):157-60. PubMed ID: 9738952 [TBL] [Abstract][Full Text] [Related]
15. Inhibitory mechanism of Ca2+ on the hemolysis caused by Vibrio vulnificus cytolysin. Park JW; Jahng TA; Rho HW; Park BH; Kim NH; Kim HR Biochim Biophys Acta; 1994 Aug; 1194(1):166-70. PubMed ID: 8075131 [TBL] [Abstract][Full Text] [Related]
16. Lipid peroxidation is another potential mechanism besides pore-formation underlying hemolysis of tentacle extract from the jellyfish Cyanea capillata. Wang T; Wen XJ; Mei XB; Wang QQ; He Q; Zheng JM; Zhao J; Xiao L; Zhang LM Mar Drugs; 2013 Jan; 11(1):67-80. PubMed ID: 23303301 [TBL] [Abstract][Full Text] [Related]
17. Role of membrane sialic acid and glycophorin protein in thorium induced aggregation and hemolysis of human erythrocytes. Kumar A; Ali M; Pandey BN; Hassan PA; Mishra KP Biochimie; 2010 Jul; 92(7):869-79. PubMed ID: 20362640 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of sodium/calcium exchange and calcium channels of heart cells by volatile anesthestics. Haworth RA; Goknur AB Anesthesiology; 1995 May; 82(5):1255-65. PubMed ID: 7741301 [TBL] [Abstract][Full Text] [Related]
19. Effects of low electrolyte media on salt loss and hemolysis of mammalian red blood cells. Zeidler RB; Kim HD J Cell Physiol; 1979 Sep; 100(3):551-61. PubMed ID: 39943 [TBL] [Abstract][Full Text] [Related]
20. [Cation transport and calcium-induced hemolysis in the erythrocytes of patients with hypertension and in spontaneously hypertensive rats (comparative analysis)]. Orlov SN; Postnov IIu; Pokudin NI; Kukharenko VIu Kardiologiia; 1989 Jul; 29(7):89-95. PubMed ID: 2811049 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]