BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 9881642)

  • 1. Ca2+ enhancement of hemolysis induced by the topical anesthetic oxethazaine in vitro.
    Yasuno R; Oguma T; Masuda Y
    Biol Pharm Bull; 1998 Dec; 21(12):1294-9. PubMed ID: 9881642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biphasic effects of oxethazaine, a topical anesthetic, on the intracellular Ca(2+) concentration of PC12 cells.
    Masuda Y; Oguma T; Kimura A
    Biochem Pharmacol; 2002 Aug; 64(4):677-87. PubMed ID: 12167487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in the actions of some blockers of the calcium-activated potassium permeability in mammalian red cells.
    Benton DC; Roxburgh CJ; Ganellin CR; Shiner MA; Jenkinson DH
    Br J Pharmacol; 1999 Jan; 126(1):169-78. PubMed ID: 10051133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The metabolic and hemodynamic effects of oxethazaine in the perfused rat liver.
    Masuda Y; Yoshizawa T; Ozaki M; Tanaka T
    Jpn J Pharmacol; 1996 Mar; 70(3):243-52. PubMed ID: 8935718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alkaline pH and internal calcium increase Na+ and K+ effluxes in LK sheep red blood cells in Cl--free solutions.
    Ortiz-Carranza O; Miller ME; Adragna NC; Lauf PK
    J Membr Biol; 1997 Apr; 156(3):287-95. PubMed ID: 9096069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca(2+)-activated K+ channel and the activation of Ca2+ influx in vanadate-treated red blood cells.
    Varecka L; Peterajová E; Sevcík J
    Gen Physiol Biophys; 1997 Dec; 16(4):339-57. PubMed ID: 9595303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of quinine and apamin on the calcium-dependent potassium permeability of mammalian hepatocytes and red cells.
    Burgess GM; Claret M; Jenkinson DH
    J Physiol; 1981 Aug; 317():67-90. PubMed ID: 6273550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory Effect of Oxethazaine on Midazolam Metabolism in Rats.
    Namba H; Nishimura Y; Kurata N; Iwase M; Hirai T; Kiuchi Y
    Biol Pharm Bull; 2017; 40(9):1361-1365. PubMed ID: 28867721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complexation of oxethazaine with 2-hydroxypropyl-β-cyclodextrin: increased drug solubility, decreased cytotoxicity and analgesia at inflamed tissues.
    Prado AR; Yokaichiya F; Franco MKKD; Silva CMGD; Oliveira-Nascimento L; Franz-Montan M; Volpato MC; Cabeça LF; de Paula E
    J Pharm Pharmacol; 2017 Jun; 69(6):652-662. PubMed ID: 28211640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The effect of membrane-bound calcium on the activity of adenosine triphosphatase from erythrocytes and erythrocyte permeability for monovalent cations].
    Orlov SN; Shevchenko AS
    Biokhimiia; 1978 Feb; 43(2):208-15. PubMed ID: 148300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between calcium and the metabolism of plasma membrane phospholipids in hemolysis induced by brown spider venom phospholipase-D toxin.
    Chaves-Moreira D; Souza FN; Fogaça RT; Mangili OC; Gremski W; Senff-Ribeiro A; Chaim OM; Veiga SS
    J Cell Biochem; 2011 Sep; 112(9):2529-40. PubMed ID: 21590705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alteration of hepatic microcirculation by oxethazaine and some vasoconstrictors in the perfused rat liver.
    Masuda Y; Ozaki M; Oguma T
    Biochem Pharmacol; 1997 Jun; 53(12):1779-87. PubMed ID: 9256152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of properties of the Ca2+ influx and of the Ca2+-activated K+ efflux (Gárdos effect) in vanadate-treated and ATP-depleted human red blood cells.
    Kaiserová K; Lakatos B; Peterajová E; Orlický J; Varecka L
    Gen Physiol Biophys; 2002 Dec; 21(4):429-42. PubMed ID: 12693714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of the Ca2+ influx reveal the duality of events underlying the activation by vanadate and fluoride of the Gárdos effect in human red blood cells.
    Varecka L; Peterajová E; Písová E
    FEBS Lett; 1998 Aug; 433(1-2):157-60. PubMed ID: 9738952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory mechanism of Ca2+ on the hemolysis caused by Vibrio vulnificus cytolysin.
    Park JW; Jahng TA; Rho HW; Park BH; Kim NH; Kim HR
    Biochim Biophys Acta; 1994 Aug; 1194(1):166-70. PubMed ID: 8075131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid peroxidation is another potential mechanism besides pore-formation underlying hemolysis of tentacle extract from the jellyfish Cyanea capillata.
    Wang T; Wen XJ; Mei XB; Wang QQ; He Q; Zheng JM; Zhao J; Xiao L; Zhang LM
    Mar Drugs; 2013 Jan; 11(1):67-80. PubMed ID: 23303301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of membrane sialic acid and glycophorin protein in thorium induced aggregation and hemolysis of human erythrocytes.
    Kumar A; Ali M; Pandey BN; Hassan PA; Mishra KP
    Biochimie; 2010 Jul; 92(7):869-79. PubMed ID: 20362640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of sodium/calcium exchange and calcium channels of heart cells by volatile anesthestics.
    Haworth RA; Goknur AB
    Anesthesiology; 1995 May; 82(5):1255-65. PubMed ID: 7741301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of low electrolyte media on salt loss and hemolysis of mammalian red blood cells.
    Zeidler RB; Kim HD
    J Cell Physiol; 1979 Sep; 100(3):551-61. PubMed ID: 39943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Cation transport and calcium-induced hemolysis in the erythrocytes of patients with hypertension and in spontaneously hypertensive rats (comparative analysis)].
    Orlov SN; Postnov IIu; Pokudin NI; Kukharenko VIu
    Kardiologiia; 1989 Jul; 29(7):89-95. PubMed ID: 2811049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.